What is the right structural congruence for the (Reversible) Calculus of Communicating Systems?
 11th International School on Rewriting

Clément Aubert ${ }^{1}$ Ioana-Domnina Cristescu ${ }^{2}$
${ }^{1}$ Augusta University - School of Computer \& Cyber Sciences

${ }^{2}$ INRIA - TAMIS team

Paris, 1-6 July 2019

Introduction

Goal

Specifying Reversible Concurrent Computation

- What?

Concurrent (multiprocessing, parallel, distributed, etc.) computation that can backtrack. Memory needs to be "enough", "not too big", and distributed.

- Why?
- Combine all the benefits of reversible and concurrent computation!
- But also all the difficulties ...
- Network of reversible computers!
- How?

Reversing process calculi, reversible event structures, etc.

Goal

Specifying Reversible Concurrent Computation

RCCS
adds
Reversibility
to the
Calculus of Communicating Systems

CCS

CCS System

(1) Operators:

$$
P, Q:=\lambda . P\left|\sum_{i \in l} P_{i}\right| A|P| Q|P \backslash a| P[a \leftarrow b] \mid 0
$$

(2) Labeled Transition System:

$$
\begin{aligned}
& \frac{P \xrightarrow{\alpha} P^{\prime}}{P\left|Q \xrightarrow{\alpha} P^{\prime}\right| Q}, \quad \frac{Q \xrightarrow{\alpha} Q^{\prime}}{P|Q \xrightarrow{\alpha} P| Q^{\prime}}, \\
& \xrightarrow{P \xrightarrow{\lambda} P^{\prime} \quad Q \xrightarrow{\bar{\lambda}} Q^{\prime}} \underset{P\left|Q \xrightarrow{\tau} P^{\prime}\right| Q^{\prime}}{ }, \\
& \text { etc. }
\end{aligned}
$$

(3) Structural Equivalence:

$$
P|0 \equiv P, \quad P| Q \equiv Q \mid P, \quad P+Q \equiv Q+P, \quad \text { etc. }
$$

ROCS

RCCS System

(1) Operators:

$$
\begin{aligned}
T & :=m \triangleright P \\
R, S & :=T|R| S \mid R \backslash a
\end{aligned}
$$

(Reversible Thread)
(RCCS Processes)
(2) Labeled Transition System:
$m \triangleright \lambda . P \xrightarrow{i \cdot \lambda}\langle i, \lambda, 0\rangle . m \triangleright P, \quad\langle i, \lambda, 0\rangle . m \triangleright P \xrightarrow{i \cdot \lambda} m \triangleright \lambda . P^{\prime}$, etc.
(3) Structural Equivalence:

$$
m \triangleright(P \mid Q) \equiv(\vee \cdot m \triangleright P) \mid(\vee \cdot m \triangleright Q)
$$

Our Problem

But hold on

(1) Isn't that mixing the syntactical sugar and the system?
(2) How come the congruence does not include e.g. $R|S \equiv S| R$?
(3) How do we know it's the right \equiv ?

CCS "Solutions"

Lemma

If $P \xrightarrow{\alpha} P^{\prime}$ with the "pure" LTS and $P \equiv Q$ then $Q \xrightarrow{\alpha} Q^{\prime}$ with the "sweetened" LTS and $P^{\prime} \equiv Q^{\prime}$.

Semantics

$\forall P, Q, \llbracket P \rrbracket \cong \llbracket Q \rrbracket \Longleftrightarrow P \equiv Q$

Syntactics
Every term P has a "normal form".

CCS "Solutions"

Lemma

If $P \xrightarrow{\alpha} P^{\prime}$ with the "pure" LTS and $P \equiv Q$ then $Q \xrightarrow{\alpha} Q^{\prime}$ with the "sweetened" LTS and $P^{\prime} \equiv Q^{\prime}$.

Where are we?

Semantics
$\forall P, Q, \llbracket P \rrbracket \cong \llbracket Q \rrbracket \Longleftrightarrow P \equiv Q$

Syntactics
Every term P has a "normal form".

CCS "Solutions"

Lemma

If $P \xrightarrow{\alpha} P^{\prime}$ with the "pure" LTS and $P \equiv Q$ then $Q \xrightarrow{\alpha} Q^{\prime}$ with the "sweetened" LTS and $P^{\prime} \equiv Q^{\prime}$.

Where are we?

Semantics
$\forall P, Q, \llbracket P \rrbracket \cong \llbracket Q \rrbracket \nLeftarrow P \equiv Q$
No! Usually, $\llbracket P+0 \rrbracket \cong \llbracket P \rrbracket$.

Syntactics

Every term P has a "normal form".

CCS "Solutions"

Lemma

If $P \xrightarrow{\alpha} P^{\prime}$ with the "pure" LTS and $P \equiv Q$ then $Q \xrightarrow{\alpha} Q^{\prime}$ with the "sweetened" LTS and $P^{\prime} \equiv Q^{\prime}$.

Where are we?

Semantics
$\forall P, Q, \llbracket P \rrbracket \cong \llbracket Q \rrbracket \nLeftarrow P \equiv Q$
No! Usually, $\llbracket P+0 \rrbracket \cong \llbracket P \rrbracket$.

Syntactics

Every term P has a "normal form". So what?

