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Model checking with the mCRL2 toolset

Specification

(mCRL2)

Property

(µ-calculus)

State space

(LTS)

PBES Answer + evidence
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State space explosion

LTS could contain many, many states
A powerful rewriter is needed
As of now, the choice of rewriter matters a lot performance-wise
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The mCRL2 language

mCRL2: Process algebra with higher-order terms as data patameters.

Terms? Higher-order.
Well typed terms of the grammar t ::= x | f | t(~t) | λ~x.t

Types? Simple.
τ ::= τbasic | τ × · · · × τ → τ

Rewrite rules? Constraint rewrite rules.
c : `→ r with c of type B and ` first-order pattern.

Rewrite step? Application of a rule + β-reduction, both closed under
contexts.
C[t]→R C[r

σ] if there exists a substitution σ and a rewrite rule
c : `→ r such that t = `σ and cσ →∗

R true.
C[(λ~x.t)(~t)]→R C[t[~x := ~t]]
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The goal

To describe and implement a rewriter

that performs well,
that we understand,
that is relatable to the theory of rewriting,
that has a clear documentation for users on the limitations of the
formalism,
that allows for optimisation.
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