
Fast Higher-order Term Rewriting for Model
Checking Purposes

Rick Erkens

Eindhoven University of Technology
The Netherlands

July 1st 2019

Rick Erkens (TU/e) Term Rewriting for Model Checking July 1st 2019 1 / 5

Model checking with the mCRL2 toolset

Specification

(mCRL2)

Property

(µ-calculus)

State space

(LTS)

PBES Answer + evidence

Rick Erkens (TU/e) Term Rewriting for Model Checking July 1st 2019 2 / 5

State space explosion

LTS could contain many, many states
A powerful rewriter is needed
As of now, the choice of rewriter matters a lot performance-wise

Rick Erkens (TU/e) Term Rewriting for Model Checking July 1st 2019 3 / 5

The mCRL2 language

mCRL2: Process algebra with higher-order terms as data patameters.

Terms? Higher-order.
Well typed terms of the grammar t ::= x | f | t(~t) | λ~x.t

Types? Simple.
τ ::= τbasic | τ × · · · × τ → τ

Rewrite rules? Constraint rewrite rules.
c : `→ r with c of type B and ` first-order pattern.

Rewrite step? Application of a rule + β-reduction, both closed under
contexts.
C[t]→R C[r

σ] if there exists a substitution σ and a rewrite rule
c : `→ r such that t = `σ and cσ →∗

R true.
C[(λ~x.t)(~t)]→R C[t[~x := ~t]]

Rick Erkens (TU/e) Term Rewriting for Model Checking July 1st 2019 4 / 5

The mCRL2 language

mCRL2: Process algebra with higher-order terms as data patameters.
Terms?

Higher-order.
Well typed terms of the grammar t ::= x | f | t(~t) | λ~x.t

Types? Simple.
τ ::= τbasic | τ × · · · × τ → τ

Rewrite rules? Constraint rewrite rules.
c : `→ r with c of type B and ` first-order pattern.

Rewrite step? Application of a rule + β-reduction, both closed under
contexts.
C[t]→R C[r

σ] if there exists a substitution σ and a rewrite rule
c : `→ r such that t = `σ and cσ →∗

R true.
C[(λ~x.t)(~t)]→R C[t[~x := ~t]]

Rick Erkens (TU/e) Term Rewriting for Model Checking July 1st 2019 4 / 5

The mCRL2 language

mCRL2: Process algebra with higher-order terms as data patameters.
Terms? Higher-order.
Well typed terms of the grammar t ::= x | f | t(~t) | λ~x.t

Types? Simple.
τ ::= τbasic | τ × · · · × τ → τ

Rewrite rules? Constraint rewrite rules.
c : `→ r with c of type B and ` first-order pattern.

Rewrite step? Application of a rule + β-reduction, both closed under
contexts.
C[t]→R C[r

σ] if there exists a substitution σ and a rewrite rule
c : `→ r such that t = `σ and cσ →∗

R true.
C[(λ~x.t)(~t)]→R C[t[~x := ~t]]

Rick Erkens (TU/e) Term Rewriting for Model Checking July 1st 2019 4 / 5

The mCRL2 language

mCRL2: Process algebra with higher-order terms as data patameters.
Terms? Higher-order.
Well typed terms of the grammar t ::= x | f | t(~t) | λ~x.t

Types?

Simple.
τ ::= τbasic | τ × · · · × τ → τ

Rewrite rules? Constraint rewrite rules.
c : `→ r with c of type B and ` first-order pattern.

Rewrite step? Application of a rule + β-reduction, both closed under
contexts.
C[t]→R C[r

σ] if there exists a substitution σ and a rewrite rule
c : `→ r such that t = `σ and cσ →∗

R true.
C[(λ~x.t)(~t)]→R C[t[~x := ~t]]

Rick Erkens (TU/e) Term Rewriting for Model Checking July 1st 2019 4 / 5

The mCRL2 language

mCRL2: Process algebra with higher-order terms as data patameters.
Terms? Higher-order.
Well typed terms of the grammar t ::= x | f | t(~t) | λ~x.t

Types? Simple.
τ ::= τbasic | τ × · · · × τ → τ

Rewrite rules? Constraint rewrite rules.
c : `→ r with c of type B and ` first-order pattern.

Rewrite step? Application of a rule + β-reduction, both closed under
contexts.
C[t]→R C[r

σ] if there exists a substitution σ and a rewrite rule
c : `→ r such that t = `σ and cσ →∗

R true.
C[(λ~x.t)(~t)]→R C[t[~x := ~t]]

Rick Erkens (TU/e) Term Rewriting for Model Checking July 1st 2019 4 / 5

The mCRL2 language

mCRL2: Process algebra with higher-order terms as data patameters.
Terms? Higher-order.
Well typed terms of the grammar t ::= x | f | t(~t) | λ~x.t

Types? Simple.
τ ::= τbasic | τ × · · · × τ → τ

Rewrite rules?

Constraint rewrite rules.
c : `→ r with c of type B and ` first-order pattern.

Rewrite step? Application of a rule + β-reduction, both closed under
contexts.
C[t]→R C[r

σ] if there exists a substitution σ and a rewrite rule
c : `→ r such that t = `σ and cσ →∗

R true.
C[(λ~x.t)(~t)]→R C[t[~x := ~t]]

Rick Erkens (TU/e) Term Rewriting for Model Checking July 1st 2019 4 / 5

The mCRL2 language

mCRL2: Process algebra with higher-order terms as data patameters.
Terms? Higher-order.
Well typed terms of the grammar t ::= x | f | t(~t) | λ~x.t

Types? Simple.
τ ::= τbasic | τ × · · · × τ → τ

Rewrite rules? Constraint rewrite rules.
c : `→ r with c of type B and ` first-order pattern.

Rewrite step? Application of a rule + β-reduction, both closed under
contexts.
C[t]→R C[r

σ] if there exists a substitution σ and a rewrite rule
c : `→ r such that t = `σ and cσ →∗

R true.
C[(λ~x.t)(~t)]→R C[t[~x := ~t]]

Rick Erkens (TU/e) Term Rewriting for Model Checking July 1st 2019 4 / 5

The mCRL2 language

mCRL2: Process algebra with higher-order terms as data patameters.
Terms? Higher-order.
Well typed terms of the grammar t ::= x | f | t(~t) | λ~x.t

Types? Simple.
τ ::= τbasic | τ × · · · × τ → τ

Rewrite rules? Constraint rewrite rules.
c : `→ r with c of type B and ` first-order pattern.

Rewrite step?

Application of a rule + β-reduction, both closed under
contexts.
C[t]→R C[r

σ] if there exists a substitution σ and a rewrite rule
c : `→ r such that t = `σ and cσ →∗

R true.
C[(λ~x.t)(~t)]→R C[t[~x := ~t]]

Rick Erkens (TU/e) Term Rewriting for Model Checking July 1st 2019 4 / 5

The mCRL2 language

mCRL2: Process algebra with higher-order terms as data patameters.
Terms? Higher-order.
Well typed terms of the grammar t ::= x | f | t(~t) | λ~x.t

Types? Simple.
τ ::= τbasic | τ × · · · × τ → τ

Rewrite rules? Constraint rewrite rules.
c : `→ r with c of type B and ` first-order pattern.

Rewrite step? Application of a rule + β-reduction, both closed under
contexts.
C[t]→R C[r

σ] if there exists a substitution σ and a rewrite rule
c : `→ r such that t = `σ and cσ →∗

R true.
C[(λ~x.t)(~t)]→R C[t[~x := ~t]]

Rick Erkens (TU/e) Term Rewriting for Model Checking July 1st 2019 4 / 5

The goal

To describe and implement a rewriter

that performs well,
that we understand,
that is relatable to the theory of rewriting,
that has a clear documentation for users on the limitations of the
formalism,
that allows for optimisation.

Rick Erkens (TU/e) Term Rewriting for Model Checking July 1st 2019 5 / 5

The goal

To describe and implement a rewriter
that performs well,

that we understand,
that is relatable to the theory of rewriting,
that has a clear documentation for users on the limitations of the
formalism,
that allows for optimisation.

Rick Erkens (TU/e) Term Rewriting for Model Checking July 1st 2019 5 / 5

The goal

To describe and implement a rewriter
that performs well,
that we understand,

that is relatable to the theory of rewriting,
that has a clear documentation for users on the limitations of the
formalism,
that allows for optimisation.

Rick Erkens (TU/e) Term Rewriting for Model Checking July 1st 2019 5 / 5

The goal

To describe and implement a rewriter
that performs well,
that we understand,
that is relatable to the theory of rewriting,

that has a clear documentation for users on the limitations of the
formalism,
that allows for optimisation.

Rick Erkens (TU/e) Term Rewriting for Model Checking July 1st 2019 5 / 5

The goal

To describe and implement a rewriter
that performs well,
that we understand,
that is relatable to the theory of rewriting,
that has a clear documentation for users on the limitations of the
formalism,

that allows for optimisation.

Rick Erkens (TU/e) Term Rewriting for Model Checking July 1st 2019 5 / 5

The goal

To describe and implement a rewriter
that performs well,
that we understand,
that is relatable to the theory of rewriting,
that has a clear documentation for users on the limitations of the
formalism,
that allows for optimisation.

Rick Erkens (TU/e) Term Rewriting for Model Checking July 1st 2019 5 / 5

