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Part 1 : Word rewriting



Presentations of monoids

generators relations monoid
a az =1 Z2 (Integers modulo 2)
a a2 =a N2 (free idempotent)
a, a aa’=1,a'a="1 Fi1 =27 (free group)
a, b ab = ba N2 =N x N
, , |aa’=1,a'a=1, B
a,a,b,b b’ =1 b'b = 1 Fo =7 « Z (free group)
az=1,b2=1, .
a, b aba = bab S3 (symmetric group)
a, b aba = bab Bs+ (positive braids)

Exercise : Give presentations for Z2 and for Bs.




Standard presentation

Remark : Any (finite) monoid has a (finite) presentation.

Let M be any monoid.

generators relations
standarc_:’ ax (x € M) axay = axy,
presentation ai =1
reduced stai_vdard a (x € M, x # 1) axay = axy (Xy # 1),
presentation axay=1(xy=1)

Exercise : Give the standard presentation of Z»
and the reduced standard one.




Reductions and derivations

Definition : A presentation of a monoid M is given by a set 2
of symbols together with a set R c 2* x 2* of rules such that

M= 2*/"R.
notion notation definition
finite sequence of symbols
word Xe2* . y
X =ai - an
elementar X = VIS arule
. y UPV . UXV =R UyV P y
reduction u, v are words
reduction X ?*RY finite chain x 2R =+ 2RY
elementary X on X — oF V e
derivation y RY OFY 7R

derivation X &*RY finite chain X &R *** ©RY




Termination

Definition : A termination ordering is a well ordering
on 2* which is compatible with multiplication.

Theorem : For a presentation (2,R),
the following three conditions are equivalent:

~N

There i1s no infinite reduction:
X0 R X1 R "°° 7R Xn 7R Xn+1 TR o

‘There is some termination ordering on 2* such
\ that x >y foreachrule p:x = yinR. )

4 )

(2,R) satisfies a principle of noetherian induction:
(vxeZ¥(vye2™ x =»rYy = P(y)) = P(x)) = vxe2” P(x)

J

Then we say that the presentation (2,R) is noetherian.



Confluence

Theorem : For a noetherian presentation, the following
four conditions (uniqueness of the reduced form,
Church-Rosser property, global and local confluence)
are equivalent:

X N (O . N\ [ X N\ )
* * N > 7 * *
YN\ Y Y N,
Y o % '\ 4
Yy, Z reduced x4

Proof: 1 = 2 = 3 = 4 (obvious)
4 = 1 (by noetherian induction)




Confluence of critical peaks

Theorem : To check local confluence,
il suffices to test confluence of critical peaks.

Example : aa é» 1, bb E 1, aba 9» bab
Ag /aaa\aA B /bbb\bB
" aaba | | abaa 1 ( ababa
\aC \ Cba 1/ \abC
abab baba babba abbab
Aba le bCl abA baBal laBab
babb bbab baa aab
\ ba/baB N Ba\ab Im bAN, Ab )

Exercise : The standard presentation is confluent.




Convergent presentations

notion definition
convergent presentation |termination + confluence

reduced generators +
reduced presentation | minimal left members +
reduced right members

orthogonal presentation no critical peak

Remark : Any (finite) convergent presentation is
equivalent to a (finite) reduced convergent presentation.

Exercise : Any orthogonal presentation is confluent.

Exercise : A (non trivial) group has no orthogonal
convergent presentation.



Knuth-Bendix completion

Remark : There is some total termination ordering on 2.

Algorithm : Reduce both sides of each critical peak :
X o ify'=2Z, then it is already confluent
y‘/ \z e ify’>2Z',add theruley’ — 2’
*l l* *Siy'<Zz,addtherulez’ =y’
Z

y * eliminate superfluous rules

Exercise : Apply this algorithm to the following rules :
aa’ > 1,aa—>1,bb > 1,bb— 1,ba— ab

Exercise : Apply this algorithm to the rule bab — aba.
ldem by adding a generator ¢ with the rule ab — c.



Word problem

Let (2,R) be a finite presentation of monoid.

problem data question
equivalence X,ye2* X <Ry 7
unit (by derivation) Xe 2" X o'r17?
unit (by reduction) Xe2* X 2?17

The second one is the word problem.

Remark : For a finite convergent presentation,
all those problems are decidable.

Exercise : There is a finite orthogonal presentation for which
those problems are undecidable. [Code the halting problem.]

Theorem (Novikov-Boone) : There is a finite presentation
of group for which the word problem is undecidable.



Part 2 : Homology of rewriting



Chain complexes

Definition : A chain complex is an infinite sequence
do . O1 On On+1

C:Co—Ci1—Coée - «CnpeCnst & Cpyn &

of abelian groups such that d» dn+1 = 0 for all n.

Example : The (full) triangle Ao

Q 4 ) 4 )
aghb Dl 2N e an
\CJ

\- J

doa=Q-P oob =R -Q ooc=R-P oitA=a+b-c
0 0
Do 7837837 00 - 391 =0

Remark : By removing the 2-cell A,
we get the empty triangle 0/s.



Homology of complexes
aO 81 an an+1

letC:Co—C1 ¢ Co e - « Cp e Cns1 & Cpup « -

Remark : 9, dn:1 =0 & im Jns+1 C ker on

/\El/\g())O

=> any boundary is a cycle

Definition : C is exact if im on+1 = ker o, for all n.

-> any cycle is a boundary
Examples : The complex Az is exact, but not dAo.

Definition : The homology groups of C are
Ho(C) =Co/imdo ... Hn+1(C) = ker dn / im on+1.



Homology of reductions

Any convergent presentation (2,R) defines a complex:

Z?g Z-Z?JZ-R gzzpq— ... Withdo=0
Exemple:aaﬁ1,bb§1,aba9>bab 3A = -23
( aaa .| [, bbb __ 9B = -2b
Aa a Bb bB 1D =
\a/)é\a) \b/l\b) 0iC=b-a
 aaba | [ abaa | [ ababa A
\aC Ca L/ \ Cba L/ \abC
abab baba babba abbab
Abal U le bCl V |abA baBal W laBab
babb bbab baa aab
\ ba/ baB) \ Bab\ab Im bAN, #Ab )

0oX=02Y=0 0oU=2C+B-A 0V=A-B-2C 0W=0



Homology of reductions

Theorem (Anick, Squier, Kobayashi) : This homology does
not depend on the choice of the (convergent) presentation:
it is the homology of the monoid M = 2*/<*R.

Corollary (Squier 1987) : If M has a finite convergent
presentation, then the abelian group Hz(M) has finite type.

In particular, Squier could build a monoid M such that:
M has a finite presentation (2,R),
* the word problem for M is decidable,
M has no finite convergent presentation.

He proved that the group Hs(M) has infinite type.
Remark : H{(M), H2(M) have finite type because 2,R are finite.
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Part 3 : Diagram rewriting



Inputs/outputs

Diagrams

V.V VY
¢

V vy

Sequential composition

Interchange

Parallel composition

L] ]
¢ Y

Y

[ 9
]




Terminology

basic case: + (disjoint union)

classical case: x (cartesian product)
f: B°P — BY (B={0,1}=1+1,B°P=B x --- x B)

linear case: ® (direct sum)
f. 7573 (Zo={01}, Z5=Zo & --- & ZLy)

quantum case: ® (tensor product)

f:B® -B% (B=C°=CaC,B**=B®- - -@B)



First example:
Finite permutations

Generator H

X
X

><
><

I
X
X

Relations

X
X

® Any finite permutation is given by a diagram.

® Jwo diagrams define the same permutation if and only
if they are equivalent modulo the above relations.



Canonical forms

Grammar for canonical forms:

1S void or

Mis‘or

!

® Any permutation corresponds to a unique

canonical form.

® Any diagram reduces to a canonical form
by the following two rewrite rules:

>

>

>

>

><
_>
><




Reduction to the
canonical form

By double induction:
® on the width (number of wires)
® on the size (total number of gates)

SR

(interchange)




Rewriting

>

X

>
s >

X

This rewrite system is convergent.

® Jermination (existence of a canonical form)

® Confluence (uniqueness of the canonical form)

Conflicts (critical peaks)

s OB R




Confluence of critical peaks
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Confluence of global conflicts

L 1o - .|
. . .|
% o) where @ is ‘ I or ><
* v | [« « « ]

ﬁ(b +E¢,
paIEPsIR N

By induction % n +§ a o
NS
E(b +E¢’




Second example:
Finite maps

Generators H * ?

>< —
(J =
Relations ﬁ< =

>

v

Qz

X

X

X

X

v Y



Rewrite rules

5
I B

SYSEEN -

S
b

20 2y

5K 2y
» »

e G e S

This rewrite system is conver




68 critical peaks

c R Y R
55 Y WYY

B EeRcECRC R IR IR
HHHY I eI Yy




Generators

Relations

Third example:
dual of finite mabs

2
o

S

4

h%z

%

3

-

¢

O

<

=N



Terms versus diagrams

® Any finite equational theory (with terms)

yields a finite presentation (with diagrams)
[Burroni 91].

® Any finite convergent left linear rewrite

system (with terms) yields a finite convergent
rewrite system (with diagrams) [Lafont 95].

The non linear case is more difficult (critical peaks).
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