
SPECIFICATION AND ANALYSIS OF

REAL-TIME SYSTEMS IN

REAL-TIME MAUDE

Peter Ölveczky

(University of Oslo)

International School on Rewriting, Paris, July 5, 2019

CONTENT

Modeling and Analyzing Real-Time Systems with Real-Time

Maude

Modeling in Real-Time Maude

Analysis in Real-Time Maude

Real-Time Maude in Context

Applications

“Concrete” Systems

Formal Semantics and Analysis for MDE Languages

Hybrid Systems

Immediate Research Challenges

1

FORMAL METHODS: KEY TRADE-OFF

expressiveness/modeling convenience ←→ analytic power

2

REWRITING LOGIC AND MAUDE

• modeling convenience!

• simple and intuitive

• any data type

• unbounded data structures

• simple model of concurrent objects

• dynamic object/message creation/deletion

• easy to define forms of communication

• hierarchical structures

- properties in general undecidable

• analysis by system execution

3

MAUDE AND REAL-TIME SYSTEMS

(How) can we model and analyze real-time systems in rewriting

logic so that the advantages of Maude are maintained?

4

MODELING AND ANALYZING

REAL-TIME SYSTEMS WITH

REAL-TIME MAUDE

MOTIVATION

Cannot always abstract from time:

• fault-tolerant systems must discover message loss/node crash

• impossible without time

• time key parameter in many algorithms

• e.g. to fine-tune performance

• time key in most systems

• toasters

• cars, airplanes, ...

• e-banking

• scheduling algorithms

• timed models enable reasoning about performance

• timed properties important

• airbag must deploy within 10ms of a crash

5

MOTIVATION

Cannot always abstract from time:

• fault-tolerant systems must discover message loss/node crash

• impossible without time

• time key parameter in many algorithms

• e.g. to fine-tune performance

• time key in most systems

• toasters

• cars, airplanes, ...

• e-banking

• scheduling algorithms

• timed models enable reasoning about performance

• timed properties important

• airbag must deploy within 10ms of a crash

5

MOTIVATION

Cannot always abstract from time:

• fault-tolerant systems must discover message loss/node crash

• impossible without time

• time key parameter in many algorithms

• e.g. to fine-tune performance

• time key in most systems

• toasters

• cars, airplanes, ...

• e-banking

• scheduling algorithms

• timed models enable reasoning about performance

• timed properties important

• airbag must deploy within 10ms of a crash

5

MOTIVATION

Cannot always abstract from time:

• fault-tolerant systems must discover message loss/node crash

• impossible without time

• time key parameter in many algorithms

• e.g. to fine-tune performance

• time key in most systems

• toasters

• cars, airplanes, ...

• e-banking

• scheduling algorithms

• timed models enable reasoning about performance

• timed properties important

• airbag must deploy within 10ms of a crash

5

MOTIVATION

Cannot always abstract from time:

• fault-tolerant systems must discover message loss/node crash

• impossible without time

• time key parameter in many algorithms

• e.g. to fine-tune performance

• time key in most systems

• toasters

• cars, airplanes, ...

• e-banking

• scheduling algorithms

• timed models enable reasoning about performance

• timed properties important

• airbag must deploy within 10ms of a crash

5

MOTIVATION

Cannot always abstract from time:

• fault-tolerant systems must discover message loss/node crash

• impossible without time

• time key parameter in many algorithms

• e.g. to fine-tune performance

• time key in most systems

• toasters

• cars, airplanes, ...

• e-banking

• scheduling algorithms

• timed models enable reasoning about performance

• timed properties important

• airbag must deploy within 10ms of a crash

5

MAIN CHALLENGE

How to deal with dense time?

Why dense time (R≥0, Q≥0, . . .)?

• “real” real-time system

• techniques useful for discrete-time systems

• example: events take place approximately once per 10,000 ms

6

MAIN CHALLENGE

How to deal with dense time?

Why dense time (R≥0, Q≥0, . . .)?

• “real” real-time system

• techniques useful for discrete-time systems

• example: events take place approximately once per 10,000 ms

6

MAIN CHALLENGE

How to deal with dense time?

Why dense time (R≥0, Q≥0, . . .)?

• “real” real-time system

• techniques useful for discrete-time systems

• example: events take place approximately once per 10,000 ms

6

REAL-TIME MAUDE [ÖLVECZKY AND MESEGUER ’04, ’06, ÖLVECZKY’14]

Real-Time Maude:

• Extends Maude to model and analyze real-time systems

• Object-oriented modeling of distributed real-time systems

• Implemented in Maude as an extension of Full Maude

• http://www.ifi.uio.no/RealTimeMaude

7

http://www.ifi.uio.no/RealTimeMaude

REAL-TIME MAUDE MODELING

• Data types modeled by algebraic equational specification

• parametric time domain

• built-in time domains NAT-TIME-DOMAIN-WITH-INF,

POSRAT-TIME-DOMAIN-WITH-INF, . . .

• Instantaneous transitions modeled by rewrite rules

crl [l] : t => t ′ if cond

• Time advance modeled explicitly by tick rewrite rules

crl [l] : {t} => {t ′} in time τ if cond

• global state has form {t}

• ensures uniform time elapse

8

REAL-TIME MAUDE MODELING

• Data types modeled by algebraic equational specification

• parametric time domain

• built-in time domains NAT-TIME-DOMAIN-WITH-INF,

POSRAT-TIME-DOMAIN-WITH-INF, . . .

• Instantaneous transitions modeled by rewrite rules

crl [l] : t => t ′ if cond

• Time advance modeled explicitly by tick rewrite rules

crl [l] : {t} => {t ′} in time τ if cond

• global state has form {t}

• ensures uniform time elapse

8

REAL-TIME MAUDE MODELING

• Data types modeled by algebraic equational specification

• parametric time domain

• built-in time domains NAT-TIME-DOMAIN-WITH-INF,

POSRAT-TIME-DOMAIN-WITH-INF, . . .

• Instantaneous transitions modeled by rewrite rules

crl [l] : t => t ′ if cond

• Time advance modeled explicitly by tick rewrite rules

crl [l] : {t} => {t ′} in time τ if cond

• global state has form {t}

• ensures uniform time elapse

8

REAL-TIME MAUDE ANALYSIS

• Timed rewriting

• simulate system to time T

• Timed reachability analysis

• find states reachable in time interval

• LTL model checking

• unbounded

• time-bounded

• finite reachable state space

• Timed CTL model checking

• “Find earliest” and “find latest” . . .

“Time sampling” discretization of dense time (see below)

9

REAL-TIME MAUDE ANALYSIS

• Timed rewriting

• simulate system to time T

• Timed reachability analysis

• find states reachable in time interval

• LTL model checking

• unbounded

• time-bounded

• finite reachable state space

• Timed CTL model checking

• “Find earliest” and “find latest” . . .

“Time sampling” discretization of dense time (see below)

9

REAL-TIME MAUDE ANALYSIS

• Timed rewriting

• simulate system to time T

• Timed reachability analysis

• find states reachable in time interval

• LTL model checking

• unbounded

• time-bounded

• finite reachable state space

• Timed CTL model checking

• “Find earliest” and “find latest” . . .

“Time sampling” discretization of dense time (see below)

9

MODELING IN REAL-TIME

MAUDE

EXAMPLE: “RETROGRADE” CLOCK

• State: {clock(r)} or {stopped-clock(r)}

• Dense time domain

• Clock can stop at any time

• Retrograde clock: clock(12) must be reset to clock(0)

10

REAL-TIME MAUDE SPECIFICATION

(tmod DENSE-CLOCK is pr POSRAT-TIME-DOMAIN .

ops clock stopped-clock : Time -> System .

vars R R’ : Time .

crl [tickWhenRunning] :

{clock(R)} => {clock(R + R’)} in time R’

if R’ <= 12 - R [nonexec] .

rl [tickWhenStopped] :

{stopped-clock(R)} => {stopped-clock(R)} in time R’

[nonexec] .

rl [reset] : clock(12) => clock(0) .

rl [batteryDies] : clock(R) => stopped-clock(R) .

endtm) 11

NEXT EXAMPLE: SINGLE IMPRECISE CLOCK

• One clock

• Imprecise: goes faster or slower than “real time”

• given by its rate

12

MODELING SINGLE IMPRECISE CLOCK

(tomod SINGLE-SKEWED-CLOCK is pr POSRAT-TIME-DOMAIN .

class Clock | running : Bool, time : Time, rate : PosRat .

var C : Oid . vars R R’ : Time . var RATE : PosRat .

crl [tickRunning] :

{< C : Clock | running : true, time : R, rate : RATE >}

=>

{< C : Clock | time : R + (RATE * R’) >} in time R’

if R’ <= (12 - R) / RATE [nonexec] .

rl [tickStopped] :

{< C : Clock | running : false >} => {< C : Clock | >}

in time R’ [nonexec] .

13

MODELING SINGLE IMPRECISE CLOCK (CONT.)

rl [reset] :

< C : Clock | running : true, time : 12 >

=>

< C : Clock | time : 0 > .

rl [break] :

< C : Clock | running : true >

=>

< C : Clock | running : false > .

endtom)

14

ANOTHER EXAMPLE: MULTIPLE IMPRECISE CLOCKS

We now model many imprecise clocks.

• Instantaneous rules as before

• Single tick rule:

var CLOCKS : Configuration . var R’ : Time .

crl [tick] :

{CLOCKS} => {advanceTime(CLOCKS)} in time R’

if R’ <= maxTimeAdvance(CLOCKS) .

15

MULTIPLE IMPRECISE CLOCKS (CONT.)

vars CLOCKS CLOCKS’ : Configuration .

op advanceTime : Configuration Time -> Configuration [frozen (1)] .

ceq advanceTime(CLOCKS CLOCKS’, R)

= advanceTime(CLOCKS, R) advanceTime(CLOCKS’, R)

if CLOCKS =/= none and CLOCKS’ =/= none .

eq advanceTime(< C : Clock | running : true, time : R,

rate : RATE >, R’)

= < C : Clock | time : R + (R’ * RATE) >

eq advanceTime(< C : Clock | running : false >, R’)

= < C : Clock | > .

16

MULTIPLE IMPRECISE CLOCKS (CONT.)

op maxTimeAdvance : Configuration -> TimeInf [frozen (1)] .

ceq maxTimeAdvance(CLOCKS CLOCK’)

= min(maxTimeAdvance(CLOCKS), maxTimeAdvance(CLOCKS’))

if CLOCKS =/= none and CLOCKS’ =/= none .

eq maxTimeAdvance(< C : Clock | running : true, time : R,

rate : RATE >)

= (12 - R) / RATE .

eq maxTimeAdvance(< C : Clock | running : false >) = INF .

17

MULTIPLE IMPRECISE CLOCKS (CONT.)

Suitable initial state is

{< ap : Clock | running : true, time : 0, rate : 5/4 >

< seiko : Clock | running : true, time : 0, rate : 1 >

< casio : Clock | running : true, time : 0, rate : 99/100 >}

18

ANOTHER EXAMPLE: POPULATIONS

Many people (cont):

• Time passes uniformly for all living persons

• everybody birthday same time

• Engagements, weddings, etc. instantaneous actions

• Must ensure nobody older than 1000!

19

ANOTHER EXAMPLE: POPULATIONS

Many people (cont):

• Time passes uniformly for all living persons

• everybody birthday same time

• Engagements, weddings, etc. instantaneous actions

• Must ensure nobody older than 1000!

19

ANOTHER EXAMPLE: POPULATIONS

Many people (cont):

• Time passes uniformly for all living persons

• everybody birthday same time

• Engagements, weddings, etc. instantaneous actions

• Must ensure nobody older than 1000!

19

POPULATIONS (CONT.)

Engagement normal instantaneous rule:

crl [engagement] :

< P : Person | age : N, status : single >

< P’ : Person | age : M, status : single >

=>

< P : Person | status : engaged(P’) >

< P’ : Person | status : engaged(P) >

if N > 15 and M > 15 .

20

POPULATIONS: TICK RULE

Time can pass by many milliseconds/days/years up to age limit:

var PERSONS : Configuration . var R : Time .

crl [tick] :

{PERSONS} => {advanceAge(PERSONS, R)} in time R

if R <= maxTimeAdvance(PERSONS) [nonexec] .

• advanceAge increases age of each living person by R

• maxTimeAdvance ensures noone gets older than 1000

Exercise

Define the functions advanceAge and maxTimeAdvance

21

POPULATIONS: TICK RULE

Time can pass by many milliseconds/days/years up to age limit:

var PERSONS : Configuration . var R : Time .

crl [tick] :

{PERSONS} => {advanceAge(PERSONS, R)} in time R

if R <= maxTimeAdvance(PERSONS) [nonexec] .

• advanceAge increases age of each living person by R

• maxTimeAdvance ensures noone gets older than 1000

Exercise

Define the functions advanceAge and maxTimeAdvance

21

OO SPECIFICATIONS

Generalizing: OO system has many instantaneous rules and usually

one tick rule

var STATE : Configuration . var R : Time .

crl [tick] :

{STATE} => {timeEffect(STATE, R)} in time R

if R <= maxTimeAdvance(STATE) .

• timeEffect(STATE, R) defines how the elapse of time R

affects the state STATE

• maxTimeAdvance(STATE) defines how much time can

advance before something must happen

22

OO SPECIFICATIONS II

timeEffect and maxTimeAdvance distribute over objects and

messages in a configuration:

vars C1 C2 : Configuration .

ceq timeEffect(C1 C2, R)

= timeEffect(C1, R) timeEffect(C2, R)

if C1 =/= none and C2 =/= none .

eq timeEffect(none, R) = none .

ceq maxTimeAdvance(C1 C2)

= min(maxTimeAdvance(C1), maxTimeAdvance(C2))

if C1 =/= none and C2 =/= none .

eq maxTimeAdvance(none) = INF .

These functions must be defined for single objects and messages 23

MODELING MESSAGE DELAYS

Message delays (communication time):

1. Message delay any value ∈ [0,∞]

2. Message delay exactly ∆

3. Message delay at least ∆

4. Message delay between 0 and ∆

5. Message delay ∆1 and ∆2

24

MODELING MESSAGE DELAYS: CASE 1

Case 1: delay could be anything:

• sender sends standard message

• receiver reads standard message

• eq timeEffect(msg, R) = msg .

• eq maxTimeAdvance(msg) = INF .

25

MODELING MESSAGE DELAYS: CASES 2 AND 3

Case 2: Message delay exactly ∆:

“Delayed” message dly(msg, r) where r is remaining delay

op dly : Msg Time -> DlyMsg [ctor right id: 0]

dly(m, 0) identical to m

• sender sends dly(msg, ∆)

• receiver reads msg

• eq timeEffect(dly(M, R), R’) = dly(M, R monus R’)

• eq maxTimeAdvance(dly(M, R)) = R

How do we model Case 3 (delay at least ∆)?

Only change: eq maxTimeAdvance(dly(M, R)) = INF

26

MODELING MESSAGE DELAYS: CASES 2 AND 3

Case 2: Message delay exactly ∆:

“Delayed” message dly(msg, r) where r is remaining delay

op dly : Msg Time -> DlyMsg [ctor right id: 0]

dly(m, 0) identical to m

• sender sends dly(msg, ∆)

• receiver reads msg

• eq timeEffect(dly(M, R), R’) = dly(M, R monus R’)

• eq maxTimeAdvance(dly(M, R)) = R

How do we model Case 3 (delay at least ∆)?

Only change: eq maxTimeAdvance(dly(M, R)) = INF

26

MODELING MESSAGE DELAYS: CASES 2 AND 3

Case 2: Message delay exactly ∆:

“Delayed” message dly(msg, r) where r is remaining delay

op dly : Msg Time -> DlyMsg [ctor right id: 0]

dly(m, 0) identical to m

• sender sends dly(msg, ∆)

• receiver reads msg

• eq timeEffect(dly(M, R), R’) = dly(M, R monus R’)

• eq maxTimeAdvance(dly(M, R)) = R

How do we model Case 3 (delay at least ∆)?

Only change: eq maxTimeAdvance(dly(M, R)) = INF

26

MODELING MESSAGE DELAYS: CASES 2 AND 3

Case 2: Message delay exactly ∆:

“Delayed” message dly(msg, r) where r is remaining delay

op dly : Msg Time -> DlyMsg [ctor right id: 0]

dly(m, 0) identical to m

• sender sends dly(msg, ∆)

• receiver reads msg

• eq timeEffect(dly(M, R), R’) = dly(M, R monus R’)

• eq maxTimeAdvance(dly(M, R)) = R

How do we model Case 3 (delay at least ∆)?

Only change: eq maxTimeAdvance(dly(M, R)) = INF

26

MODELING MESSAGE DELAYS: CASES 2 AND 3

Case 2: Message delay exactly ∆:

“Delayed” message dly(msg, r) where r is remaining delay

op dly : Msg Time -> DlyMsg [ctor right id: 0]

dly(m, 0) identical to m

• sender sends dly(msg, ∆)

• receiver reads msg

• eq timeEffect(dly(M, R), R’) = dly(M, R monus R’)

• eq maxTimeAdvance(dly(M, R)) = R

How do we model Case 3 (delay at least ∆)?

Only change: eq maxTimeAdvance(dly(M, R)) = INF

26

MODELING MESSAGE DELAYS: CASES 2 AND 3

Case 2: Message delay exactly ∆:

“Delayed” message dly(msg, r) where r is remaining delay

op dly : Msg Time -> DlyMsg [ctor right id: 0]

dly(m, 0) identical to m

• sender sends dly(msg, ∆)

• receiver reads msg

• eq timeEffect(dly(M, R), R’) = dly(M, R monus R’)

• eq maxTimeAdvance(dly(M, R)) = R

How do we model Case 3 (delay at least ∆)?

Only change: eq maxTimeAdvance(dly(M, R)) = INF

26

MODELING MESSAGE DELAYS: CASES 2 AND 3

Case 2: Message delay exactly ∆:

“Delayed” message dly(msg, r) where r is remaining delay

op dly : Msg Time -> DlyMsg [ctor right id: 0]

dly(m, 0) identical to m

• sender sends dly(msg, ∆)

• receiver reads msg

• eq timeEffect(dly(M, R), R’) = dly(M, R monus R’)

• eq maxTimeAdvance(dly(M, R)) = R

How do we model Case 3 (delay at least ∆)?

Only change: eq maxTimeAdvance(dly(M, R)) = INF

26

MODELING MESSAGE DELAYS: CASES 2 AND 3

Case 2: Message delay exactly ∆:

“Delayed” message dly(msg, r) where r is remaining delay

op dly : Msg Time -> DlyMsg [ctor right id: 0]

dly(m, 0) identical to m

• sender sends dly(msg, ∆)

• receiver reads msg

• eq timeEffect(dly(M, R), R’) = dly(M, R monus R’)

• eq maxTimeAdvance(dly(M, R)) = R

How do we model Case 3 (delay at least ∆)?

Only change: eq maxTimeAdvance(dly(M, R)) = INF

26

MORE MESSAGE DELAY

Exercise

How do we model Cases 4 and 5?

27

REPRESENTING TIMED AUTOMATA

State: {location, xVal, yVal}

vars X Y R : Time .

rl [tick-a] : {a, X, Y} => {a, X + R, Y + R} in time R [nonexec] .

crl [tick-b] : {b, X, Y} => {b, X + R, Y + R} in time R

if R <= 5 - Y [nonexec] .

crl [ab] : {a, X, Y} => {b, 0, Y} if X > 2 .

crl [ba] : {b, X, Y} => {a, X, Y} if Y > 3 .
28

ANALYSIS IN REAL-TIME MAUDE

REAL-TIME MAUDE ANALYSIS

• Timed rewriting

• simulate system to time T

• Timed reachability analysis

• LTL model checking

• unbounded

• time-bounded

• Timed CTL model checking

29

INTERNAL REPRESENTATION

• Uses Maude rewriting, search and LTL model checking

• Internal representation of states:

1. {t} in time totalDuration

• time-bounded analysis

• reachable state space infinite

2. {t}

• “system time”/“duration” abstracted away

• does not add states

• analysis without time bounds

30

INTERNAL REPRESENTATION

• Uses Maude rewriting, search and LTL model checking

• Internal representation of states:

1. {t} in time totalDuration

• time-bounded analysis

• reachable state space infinite

2. {t}

• “system time”/“duration” abstracted away

• does not add states

• analysis without time bounds

30

RETROGRADE WATCH (AGAIN)

(tmod DENSE-CLOCK is pr POSRAT-TIME-DOMAIN .

ops clock stopped-clock : Time -> System .

vars R R’ : Time .

crl [tickWhenRunning] :

{clock(R)} => {clock(R + R’)} in time R’

if R’ <= 12 - R [nonexec] .

rl [tickWhenStopped] :

{stopped-clock(R)} => {stopped-clock(R)} in time R’

[nonexec] .

rl [reset] : clock(12) => clock(0) .

rl [batteryDies] : clock(R) => stopped-clock(R) .

endtm) 31

MAIN CHALLENGE

How to deal with dense time?

32

TIME SAMPLING

• Tick rules “cover” dense time domain

• not executable

• “On-the-fly discretization:” time sampling strategies

• advance time by default value ∆

• advance time as much as possible (“event-driven simulation”)

• Analysis incomplete: all behaviors not covered

33

TIME SAMPLING

• Tick rules “cover” dense time domain

• not executable

• “On-the-fly discretization:” time sampling strategies

• advance time by default value ∆

• advance time as much as possible (“event-driven simulation”)

• Analysis incomplete: all behaviors not covered

33

TIME SAMPLING

• Tick rules “cover” dense time domain

• not executable

• “On-the-fly discretization:” time sampling strategies

• advance time by default value ∆

• advance time as much as possible (“event-driven simulation”)

• Analysis incomplete: all behaviors not covered

33

SIMULATION

Define time sampling:

Maude> (set tick def 1 .)

• analysis w.r.t. this strategy

Rewriting simulates one possible behavior:

Maude> (trew {clock(0)} in time <= 100 .)

Result ClockedSystem :

{stopped-clock(12)} in time 100

34

SIMULATION

Define time sampling:

Maude> (set tick def 1 .)

• analysis w.r.t. this strategy

Rewriting simulates one possible behavior:

Maude> (trew {clock(0)} in time <= 100 .)

Result ClockedSystem :

{stopped-clock(12)} in time 100

34

SIMULATION

Define time sampling:

Maude> (set tick def 1 .)

• analysis w.r.t. this strategy

Rewriting simulates one possible behavior:

Maude> (trew {clock(0)} in time <= 100 .)

Result ClockedSystem :

{stopped-clock(12)} in time 100

34

TIME-BOUNDED SEARCH

• Can {clock(8)} be reached in time ∈ [23, 25]?

Maude> (tsearch {clock(0)} =>* {clock(8)}

in time-interval between >= 23 and <= 25 .)

No solution

• . . . in time ≥ 31?

Maude> (tsearch {clock(0)} =>* {clock(8)}

in time >= 31 .)

Solution 1

TIME_ELAPSED:Time --> 32

35

TIME-BOUNDED SEARCH

• Can {clock(8)} be reached in time ∈ [23, 25]?

Maude> (tsearch {clock(0)} =>* {clock(8)}

in time-interval between >= 23 and <= 25 .)

No solution

• . . . in time ≥ 31?

Maude> (tsearch {clock(0)} =>* {clock(8)}

in time >= 31 .)

Solution 1

TIME_ELAPSED:Time --> 32

35

TIME-BOUNDED SEARCH

• Can {clock(8)} be reached in time ∈ [23, 25]?

Maude> (tsearch {clock(0)} =>* {clock(8)}

in time-interval between >= 23 and <= 25 .)

No solution

• . . . in time ≥ 31?

Maude> (tsearch {clock(0)} =>* {clock(8)}

in time >= 31 .)

Solution 1

TIME_ELAPSED:Time --> 32

35

TIME-BOUNDED SEARCH

• Can {clock(8)} be reached in time ∈ [23, 25]?

Maude> (tsearch {clock(0)} =>* {clock(8)}

in time-interval between >= 23 and <= 25 .)

No solution

• . . . in time ≥ 31?

Maude> (tsearch {clock(0)} =>* {clock(8)}

in time >= 31 .)

Solution 1

TIME_ELAPSED:Time --> 32

35

SEARCH

• Can {clock(13)} be reached?

(utsearch [1] {clock(0)} =>* {clock(13)} .)

• State {clock(13)} not found:

(utsearch [1] {clock(0)} =>* {clock(1/2)} .)

36

SEARCH

• Can {clock(13)} be reached?

(utsearch [1] {clock(0)} =>* {clock(13)} .)

• State {clock(13)} not found:

(utsearch [1] {clock(0)} =>* {clock(1/2)} .)

36

SOUND AND COMPLETE UNTIMED ANALYSIS

• Time sampling discretization of dense time
• All behaviors not covered

• analysis not sound/complete

• states reached and LTL counterexamples are correct

• Maximal time sampling analysis sound and complete for
time-robust models [Ölveczky-Meseguer’06]

• events at given times

• atomic propositions not modified by ticks

• Sound/complete analysis for systems beyond timed automata

37

SOUND AND COMPLETE UNTIMED ANALYSIS

• Time sampling discretization of dense time
• All behaviors not covered

• analysis not sound/complete

• states reached and LTL counterexamples are correct

• Maximal time sampling analysis sound and complete for
time-robust models [Ölveczky-Meseguer’06]

• events at given times

• atomic propositions not modified by ticks

• Sound/complete analysis for systems beyond timed automata

37

TIMED TEMPORAL LOGIC

• So far: untimed properties/temporal logic

• “the airbag must eventually deploy after crash detected”

• “BO eventually closes G”

• Timed temporal logics

• “the airbag must deploy within 10ms after crash”

• “BO closes G within one year of inauguration”

38

TIMED TEMPORAL LOGIC

• So far: untimed properties/temporal logic

• “the airbag must eventually deploy after crash detected”

• “BO eventually closes G”

• Timed temporal logics

• “the airbag must deploy within 10ms after crash”

• “BO closes G within one year of inauguration”

38

REAL-TIME MAUDE’S TCTL MODEL CHECKER

• Explicit-state timed CTL model checker for Real-Time Maude

• TCTL: temporal operators with time intervals: ∃ φ U[r1,r2] φ′

• ∀2 (crash =⇒ ∀3≤10ms airbagDeployed)

• ∀2((inauguration(BO)∧open(G)) =⇒ ∀3≤one year closed(G))

• (mc-tctl {clock(6)}|= EF[<= than 8] clock-is(12) .)

D. Lepri, E. Ábrahám, P.C. Ölveczky: Sound and complete timed CTL model

checking of timed Kripke structures and real-time rewrite theories. Science of

Computer Programming 99 (2015)

39

REAL-TIME MAUDE’S TCTL MODEL CHECKER

• Explicit-state timed CTL model checker for Real-Time Maude

• TCTL: temporal operators with time intervals: ∃ φ U[r1,r2] φ′

• ∀2 (crash =⇒ ∀3≤10ms airbagDeployed)

• ∀2((inauguration(BO)∧open(G)) =⇒ ∀3≤one year closed(G))

• (mc-tctl {clock(6)}|= EF[<= than 8] clock-is(12) .)

D. Lepri, E. Ábrahám, P.C. Ölveczky: Sound and complete timed CTL model

checking of timed Kripke structures and real-time rewrite theories. Science of

Computer Programming 99 (2015)

39

INTENDED SEMANTICS

What is the intended semantics of a Real-Time Maude model?

{clock(R)}→ {clock(R + R ′)} in time R ′ if R ′ ≤ 12− R

• Should ∀3[1,2] True hold from {clock(0)}?

• Pointwise semantics

- only visited states into account

- ∀3[1,2] True does not hold from {clock(0)}

• Continuous semantics

- tick rule interpreted as representing continuous process

- ∀3[1,2] True holds from {clock(0)}

40

INTENDED SEMANTICS

What is the intended semantics of a Real-Time Maude model?

{clock(R)}→ {clock(R + R ′)} in time R ′ if R ′ ≤ 12− R

• Should ∀3[1,2] True hold from {clock(0)}?

• Pointwise semantics

- only visited states into account

- ∀3[1,2] True does not hold from {clock(0)}

• Continuous semantics

- tick rule interpreted as representing continuous process

- ∀3[1,2] True holds from {clock(0)}

40

INTENDED SEMANTICS

What is the intended semantics of a Real-Time Maude model?

{clock(R)}→ {clock(R + R ′)} in time R ′ if R ′ ≤ 12− R

• Should ∀3[1,2] True hold from {clock(0)}?

• Pointwise semantics

- only visited states into account

- ∀3[1,2] True does not hold from {clock(0)}

• Continuous semantics

- tick rule interpreted as representing continuous process

- ∀3[1,2] True holds from {clock(0)}

40

INTENDED SEMANTICS

What is the intended semantics of a Real-Time Maude model?

{clock(R)}→ {clock(R + R ′)} in time R ′ if R ′ ≤ 12− R

• Should ∀3[1,2] True hold from {clock(0)}?

• Pointwise semantics

- only visited states into account

- ∀3[1,2] True does not hold from {clock(0)}

• Continuous semantics

- tick rule interpreted as representing continuous process

- ∀3[1,2] True holds from {clock(0)}

40

SOUNDNESS AND COMPLETENESS

Soundness and completeness for maximal time sampling analyses

of untimed TL do not carry over to timed CTL

• maximal time sampling analysis does not satisfy ∃3[1,2] True

• ... or ∀3[1,2] True

41

SOUND AND COMPLETE TCTL MODEL CHECKING

• Continuous and pointwise interpretation

• Time-sampling-based sound and complete TCTL model
checking for time-robust Real-Time Maude models

• advance time by

gcd(numbers in formulas,max−tick durations)

2

42

SOUND AND COMPLETE TCTL MODEL CHECKING

• Continuous and pointwise interpretation

• Time-sampling-based sound and complete TCTL model
checking for time-robust Real-Time Maude models

• advance time by

gcd(numbers in formulas,max−tick durations)

2

42

TIMED CTL MODEL CHECKING (II)

• Not reducible to Maude model checking

• No counterexamples/witnesses

• Crossing-the-Bridge benchmark comparison:

Initial state TSMV Real-Time Maude RED 7.0

(pointwise) (continuous)

init(1) 0.074 0.149 1.266 0.429

init(10) 0.148 0.168 0.999 0.408

init(100) 1.443 0.168 1.012 0.404

init(1000) 57.426 0.327 1.014 0.426

init+(2) 0.191 0.746 6.864 1.044

init+(4) 0.280 1.772 17.752 2.153

init+(8) 0.759 5.227 57.580 16.912

init+(12) 1.080 11.198 129.957 79.319

init+(16) 1.515 19.620 233.414 241.098

Execution times for the bridge crossing problem (in seconds).

43

TIMED CTL MODEL CHECKING (II)

• Not reducible to Maude model checking

• No counterexamples/witnesses

• Crossing-the-Bridge benchmark comparison:

Initial state TSMV Real-Time Maude RED 7.0

(pointwise) (continuous)

init(1) 0.074 0.149 1.266 0.429

init(10) 0.148 0.168 0.999 0.408

init(100) 1.443 0.168 1.012 0.404

init(1000) 57.426 0.327 1.014 0.426

init+(2) 0.191 0.746 6.864 1.044

init+(4) 0.280 1.772 17.752 2.153

init+(8) 0.759 5.227 57.580 16.912

init+(12) 1.080 11.198 129.957 79.319

init+(16) 1.515 19.620 233.414 241.098

Execution times for the bridge crossing problem (in seconds).

43

IN CONTEXT (I)

• Timed automata
• restricted formalism . . .

• . . . many properties decidable

• state-of-the-art tools: Uppaal, RED

• Time(d) Petri nets
• limited tool support

• Timed process algebras

• IF, TE-LOTOS, etc:
• separate formalisms for data types, dynamic behavior, and time

• unclear or non-existing semantics

• based on fixed communication primitives

• Moby/RT

• designs specified as PLC-automata

• translated into timed automata for model checking

• BIP (Behavior, Interaction, Priority)
• “Behavior is described as a Petri net extended with data and

functions described in C”

44

IN CONTEXT (I)

• Timed automata
• restricted formalism . . .

• . . . many properties decidable

• state-of-the-art tools: Uppaal, RED

• Time(d) Petri nets
• limited tool support

• Timed process algebras
• IF, TE-LOTOS, etc:

• separate formalisms for data types, dynamic behavior, and time

• unclear or non-existing semantics

• based on fixed communication primitives

• Moby/RT

• designs specified as PLC-automata

• translated into timed automata for model checking

• BIP (Behavior, Interaction, Priority)
• “Behavior is described as a Petri net extended with data and

functions described in C”
44

IN CONTEXT (II)

Real-Time Maude:

• simple and intuitive

• expressive

• any data type

• unbounded data structures

• dynamic object/message creation/deletion

• hierarchical structures

• easy to define communication forms

- properties in general undecidable

- discrete abstraction may not exist in general

45

IN CONTEXT (II)

Real-Time Maude:

• simple and intuitive

• expressive

• any data type

• unbounded data structures

• dynamic object/message creation/deletion

• hierarchical structures

• easy to define communication forms

- properties in general undecidable

- discrete abstraction may not exist in general

45

APPLICATIONS

THE MAIN QUESTION

Complex data types; unbounded data structures; flexible

communication models; hierarchical objects; dynamic object

creation/deletion; . . .

Are there systems where Real-Time Maude’s expressiveness needed

and

Real-Time Maude analysis yields interesting results?

46

THE MAIN QUESTION

Complex data types; unbounded data structures; flexible

communication models; hierarchical objects; dynamic object

creation/deletion; . . .

Are there systems where Real-Time Maude’s expressiveness needed

and

Real-Time Maude analysis yields interesting results?

46

CLASSES OF APPLICATIONS

• “Concrete” systems/protocols

• Semantic framework for real-time systems

• Formal analysis tool for other languages

• ...

47

AER/NCA [WITH C. TALCOTT AND OTHERS]

AER/NCA :

• Multicast for active networks

• 50 pages of use cases

• involves link capacity and propagation delay, packet sizes, etc.

• Real-Time Maude analysis found all known design errors

• . . . and additional unknown serious design errors

Key Real-Time Maude features:

• detailed parametric model of communication

• laaaaarge functions

• multiple class inheritance to combine subprotocols

48

AER/NCA [WITH C. TALCOTT AND OTHERS]

AER/NCA :

• Multicast for active networks

• 50 pages of use cases

• involves link capacity and propagation delay, packet sizes, etc.

• Real-Time Maude analysis found all known design errors

• . . . and additional unknown serious design errors

Key Real-Time Maude features:

• detailed parametric model of communication

• laaaaarge functions

• multiple class inheritance to combine subprotocols

48

AER/NCA [WITH C. TALCOTT AND OTHERS]

AER/NCA :

• Multicast for active networks

• 50 pages of use cases

• involves link capacity and propagation delay, packet sizes, etc.

• Real-Time Maude analysis found all known design errors

• . . . and additional unknown serious design errors

Key Real-Time Maude features:

• detailed parametric model of communication

• laaaaarge functions

• multiple class inheritance to combine subprotocols

48

AER/NCA [WITH C. TALCOTT AND OTHERS]

AER/NCA :

• Multicast for active networks

• 50 pages of use cases

• involves link capacity and propagation delay, packet sizes, etc.

• Real-Time Maude analysis found all known design errors

• . . . and additional unknown serious design errors

Key Real-Time Maude features:

• detailed parametric model of communication

• laaaaarge functions

• multiple class inheritance to combine subprotocols

48

CASH SCHEDULING ALGORITHM [ÖLVECZKY-CACCAMO’06]

CASH : State-of-the-art scheduling algorithm

• A job can use more or less time than allocated

• Unused execution times put in a queue for reuse

• Simulation: # elements in queue unbounded

• Search found missed hard deadline

• Extensive “Monte-Carlo simulation” did not find flaw

Key Real-Time Maude feature: unbounded data structures

49

CASH SCHEDULING ALGORITHM [ÖLVECZKY-CACCAMO’06]

CASH : State-of-the-art scheduling algorithm

• A job can use more or less time than allocated

• Unused execution times put in a queue for reuse

• Simulation: # elements in queue unbounded

• Search found missed hard deadline

• Extensive “Monte-Carlo simulation” did not find flaw

Key Real-Time Maude feature: unbounded data structures

49

CASH SCHEDULING ALGORITHM [ÖLVECZKY-CACCAMO’06]

CASH : State-of-the-art scheduling algorithm

• A job can use more or less time than allocated

• Unused execution times put in a queue for reuse

• Simulation: # elements in queue unbounded

• Search found missed hard deadline

• Extensive “Monte-Carlo simulation” did not find flaw

Key Real-Time Maude feature: unbounded data structures

49

CASH SCHEDULING ALGORITHM [ÖLVECZKY-CACCAMO’06]

CASH : State-of-the-art scheduling algorithm

• A job can use more or less time than allocated

• Unused execution times put in a queue for reuse

• Simulation: # elements in queue unbounded

• Search found missed hard deadline

• Extensive “Monte-Carlo simulation” did not find flaw

Key Real-Time Maude feature: unbounded data structures

49

CASH SCHEDULING ALGORITHM [ÖLVECZKY-CACCAMO’06]

CASH : State-of-the-art scheduling algorithm

• A job can use more or less time than allocated

• Unused execution times put in a queue for reuse

• Simulation: # elements in queue unbounded

• Search found missed hard deadline

• Extensive “Monte-Carlo simulation” did not find flaw

Key Real-Time Maude feature: unbounded data structures

49

CASH SCHEDULING ALGORITHM [ÖLVECZKY-CACCAMO’06]

CASH : State-of-the-art scheduling algorithm

• A job can use more or less time than allocated

• Unused execution times put in a queue for reuse

• Simulation: # elements in queue unbounded

• Search found missed hard deadline

• Extensive “Monte-Carlo simulation” did not find flaw

Key Real-Time Maude feature: unbounded data structures

49

OGDC WIRELESS SENSOR NETWORK ALGORITHM [WITH S.

THORVALDSEN]

OGDC : density control algorithm for wireless sensor networks

• Simulated by developers using ns-2 with wireless extension

• New form of communication: radio transmission

• easy to specify in Real-Time Maude

• Real-Time Maude simulations found unknown major flaw

• Performance estimation as good as WSN simulation tool

Key Real-Time Maude features:

• easy to define “new” model of communication

• complex data types and functions (areas, angles, distances)

• simulation

50

OGDC WIRELESS SENSOR NETWORK ALGORITHM [WITH S.

THORVALDSEN]

OGDC : density control algorithm for wireless sensor networks

• Simulated by developers using ns-2 with wireless extension

• New form of communication: radio transmission

• easy to specify in Real-Time Maude

• Real-Time Maude simulations found unknown major flaw

• Performance estimation as good as WSN simulation tool

Key Real-Time Maude features:

• easy to define “new” model of communication

• complex data types and functions (areas, angles, distances)

• simulation

50

OGDC WIRELESS SENSOR NETWORK ALGORITHM [WITH S.

THORVALDSEN]

OGDC : density control algorithm for wireless sensor networks

• Simulated by developers using ns-2 with wireless extension

• New form of communication: radio transmission

• easy to specify in Real-Time Maude

• Real-Time Maude simulations found unknown major flaw

• Performance estimation as good as WSN simulation tool

Key Real-Time Maude features:

• easy to define “new” model of communication

• complex data types and functions (areas, angles, distances)

• simulation

50

OGDC WIRELESS SENSOR NETWORK ALGORITHM [WITH S.

THORVALDSEN]

OGDC : density control algorithm for wireless sensor networks

• Simulated by developers using ns-2 with wireless extension

• New form of communication: radio transmission

• easy to specify in Real-Time Maude

• Real-Time Maude simulations found unknown major flaw

• Performance estimation as good as WSN simulation tool

Key Real-Time Maude features:

• easy to define “new” model of communication

• complex data types and functions (areas, angles, distances)

• simulation

50

MEGASTORE AND MEGASTORE-CGC [GROV-ÖLVECZKY’14]

Megastore : Google’s distributed data store

• Developed Real-Time Maude specification
• Megastore:

• consistency for transactions accessing one entity group

• Megastore-CGC:
• consistency for transactions accessing multiple entity groups

Key Real-Time Maude features:

• simple and intuitive language

• automatic “testing” highly appreciated

• analysis of performance and correctness

51

MEGASTORE AND MEGASTORE-CGC [GROV-ÖLVECZKY’14]

Megastore : Google’s distributed data store

• Developed Real-Time Maude specification

• Megastore:
• consistency for transactions accessing one entity group

• Megastore-CGC:
• consistency for transactions accessing multiple entity groups

Key Real-Time Maude features:

• simple and intuitive language

• automatic “testing” highly appreciated

• analysis of performance and correctness

51

MEGASTORE AND MEGASTORE-CGC [GROV-ÖLVECZKY’14]

Megastore : Google’s distributed data store

• Developed Real-Time Maude specification
• Megastore:

• consistency for transactions accessing one entity group

• Megastore-CGC:
• consistency for transactions accessing multiple entity groups

Key Real-Time Maude features:

• simple and intuitive language

• automatic “testing” highly appreciated

• analysis of performance and correctness

51

MEGASTORE AND MEGASTORE-CGC [GROV-ÖLVECZKY’14]

Megastore : Google’s distributed data store

• Developed Real-Time Maude specification
• Megastore:

• consistency for transactions accessing one entity group

• Megastore-CGC:
• consistency for transactions accessing multiple entity groups

Key Real-Time Maude features:

• simple and intuitive language

• automatic “testing” highly appreciated

• analysis of performance and correctness 51

HUMAN MULTITASKING [BROCCIA-MILAZZO-ÖLVECZKY’18]

Modeling and analysis framework for human multitasking

• human short-term memory

• attention

• tasks

• . . .

• Will GPS distract driver for more than n seconds?

• Will other tasks make driver/pilot forget important things?

52

HUMAN MULTITASKING [BROCCIA-MILAZZO-ÖLVECZKY’18]

Modeling and analysis framework for human multitasking

• human short-term memory

• attention

• tasks

• . . .

• Will GPS distract driver for more than n seconds?

• Will other tasks make driver/pilot forget important things?

52

SOME OTHER “CONCRETE” APPLICATIONS

• Found several bugs in embedded car software used by major
car makers (Japan)

• bugs not found by model-checking tools employed in industry

• ERMTS/ETCS railway signaling and control system

• Leader election for mobile ad hoc networks

• EIGRP Cisco routing protocol (Riesco, Verdejo)

• Parts of NORM multicast protocol developed by IETF

53

SOME OTHER “CONCRETE” APPLICATIONS

• Found several bugs in embedded car software used by major
car makers (Japan)

• bugs not found by model-checking tools employed in industry

• ERMTS/ETCS railway signaling and control system

• Leader election for mobile ad hoc networks

• EIGRP Cisco routing protocol (Riesco, Verdejo)

• Parts of NORM multicast protocol developed by IETF

53

FORMAL SEMANTICS AND ANALYSIS FORMDE LANGUAGES

• Modeling languages for embedded systems

• intuitive domain-specific modeling

• often lack formal semantics and analysis

• Real-Time Maude semantic framework and formal analysis
tool for such languages

• modeling languages used in industry

• Ptolemy II DE models

• AADL avionics modeling standard (subset)

• DOCOMO’s L language

• timed model transformations

• Real-Time MOMENT-2

• e-Motions

• Orc, Timed Rebeca, . . .

54

FORMAL SEMANTICS AND ANALYSIS FORMDE LANGUAGES

• Modeling languages for embedded systems

• intuitive domain-specific modeling

• often lack formal semantics and analysis

• Real-Time Maude semantic framework and formal analysis
tool for such languages

• modeling languages used in industry

• Ptolemy II DE models

• AADL avionics modeling standard (subset)

• DOCOMO’s L language

• timed model transformations

• Real-Time MOMENT-2

• e-Motions

• Orc, Timed Rebeca, . . .

54

FORMAL SEMANTICS AND ANALYSIS FORMDE LANGUAGES

• Modeling languages for embedded systems

• intuitive domain-specific modeling

• often lack formal semantics and analysis

• Real-Time Maude semantic framework and formal analysis
tool for such languages

• modeling languages used in industry

• Ptolemy II DE models

• AADL avionics modeling standard (subset)

• DOCOMO’s L language

• timed model transformations

• Real-Time MOMENT-2

• e-Motions

• Orc, Timed Rebeca, . . .

54

FORMAL SEMANTICS AND ANALYSIS FORMDE LANGUAGES

• Modeling languages for embedded systems

• intuitive domain-specific modeling

• often lack formal semantics and analysis

• Real-Time Maude semantic framework and formal analysis
tool for such languages

• modeling languages used in industry

• Ptolemy II DE models

• AADL avionics modeling standard (subset)

• DOCOMO’s L language

• timed model transformations

• Real-Time MOMENT-2

• e-Motions

• Orc, Timed Rebeca, . . .

54

PTOLEMY II DE MODELS [JOINT WORK WITH KYUNGMIN BAE ET AL.]

Ptolemy II

• graphical modeling and simulation tool from UC Berkeley

• hierarchical composition of actors

• different models of computation
• Discrete Event (DE) models:

• timed

• fixed-point semantics of synchronous languages

Key Maude features:

• hierarchical configurations

• expressiveness

• unbounded data structures

• parametric atomic propositions

55

PTOLEMY II DE MODELS [JOINT WORK WITH KYUNGMIN BAE ET AL.]

Ptolemy II

• graphical modeling and simulation tool from UC Berkeley

• hierarchical composition of actors

• different models of computation
• Discrete Event (DE) models:

• timed

• fixed-point semantics of synchronous languages

Key Maude features:

• hierarchical configurations

• expressiveness

• unbounded data structures

• parametric atomic propositions

55

PTOLEMY II DE MODELS [JOINT WORK WITH KYUNGMIN BAE ET AL.]

Ptolemy II

• graphical modeling and simulation tool from UC Berkeley

• hierarchical composition of actors

• different models of computation
• Discrete Event (DE) models:

• timed

• fixed-point semantics of synchronous languages

Key Maude features:

• hierarchical configurations

• expressiveness

• unbounded data structures

• parametric atomic propositions
55

PTOLEMY II: FAULT-TOLERANT TRAFFIC LIGHTS

TrafficLight

TrafficLight

Error

Normal

Decision

HierarchicalTrafficLight

56

FORMAL ANALYSIS OF PTOLEMY DE MODELS

Predefined parametric propositions:

actorId | var1 = value1 , . . . , varn = valuen

actorId @ location

actorId | port p is value

actorId | port p is status
57

A TIMED CTL PROPERTY

Car light will show only yellow within time 1 of a failure:

AG ((’HierarchicalTrafficLight . ’Decision |

port ’Error is present)

=> AF[<= 1] (’HierarchicalTrafficLight |

’Cyel = 1, ’Cgrn = 0, ’Cred = 0))

58

ANALYZING PTOLEMY II MODELS WITHIN PTOLEMY

59

CONCLUDING REMARKS

• Real-Time Maude formalism expressive and intuitive

• Sound/complete timed CTL model checking
abstraction/discretization for time-robust theories

• sound/complete analysis for new classes of systems

• Used on state-of-the-art systems in different domains

• value added to domain-specific analysis

• Useful both as simulation tool and model checker

• Semantics and analysis tool for modeling languages

• model checker for free for those languages

60

CONCLUDING REMARKS

• Real-Time Maude formalism expressive and intuitive

• Sound/complete timed CTL model checking
abstraction/discretization for time-robust theories

• sound/complete analysis for new classes of systems

• Used on state-of-the-art systems in different domains

• value added to domain-specific analysis

• Useful both as simulation tool and model checker

• Semantics and analysis tool for modeling languages

• model checker for free for those languages

60

CONCLUDING REMARKS

• Real-Time Maude formalism expressive and intuitive

• Sound/complete timed CTL model checking
abstraction/discretization for time-robust theories

• sound/complete analysis for new classes of systems

• Used on state-of-the-art systems in different domains

• value added to domain-specific analysis

• Useful both as simulation tool and model checker

• Semantics and analysis tool for modeling languages

• model checker for free for those languages

60

CONCLUDING REMARKS

• Real-Time Maude formalism expressive and intuitive

• Sound/complete timed CTL model checking
abstraction/discretization for time-robust theories

• sound/complete analysis for new classes of systems

• Used on state-of-the-art systems in different domains

• value added to domain-specific analysis

• Useful both as simulation tool and model checker

• Semantics and analysis tool for modeling languages

• model checker for free for those languages

60

CONCLUDING REMARKS

• Real-Time Maude formalism expressive and intuitive

• Sound/complete timed CTL model checking
abstraction/discretization for time-robust theories

• sound/complete analysis for new classes of systems

• Used on state-of-the-art systems in different domains

• value added to domain-specific analysis

• Useful both as simulation tool and model checker

• Semantics and analysis tool for modeling languages

• model checker for free for those languages

60

IMMEDIATE RESEARCH

CHALLENGES

COMBINING REAL-TIME AND PROBABILITIES

• Large distributed systems often real-time and probabilistic

• PVeStA and MultiVeStA: statistical model checking

• estimate value of expression with statistical guarantees

• scalable formal method

• apply to fully probabilistic rewrite theories

61

COMBINING REAL-TIME AND PROBABILITIES

• Large distributed systems often real-time and probabilistic

• PVeStA and MultiVeStA: statistical model checking

• estimate value of expression with statistical guarantees

• scalable formal method

• apply to fully probabilistic rewrite theories

61

COMBINING REAL-TIME AND PROBABILITIES (CONT.)

Exists:

1. Formal model for probabilistic real-time rewrite theories

[Bentea-Ölveczky’11]

2. Obtain fully probabilistic “real-time” OO models [Meseguer et al’12]:

• message delay sampled probabilistically from dense interval

• zero probability that two message-triggered actions enabled

same time

• estimate performance, etc, of cloud computing systems and

DoS defense mechanisms

Need: theoretical model and language/tool support

• larger class of systems (message-triggered; flat OO; ad-hoc

timing)

• automatic transformation to PVeStA

62

COMBINING REAL-TIME AND PROBABILITIES (CONT.)

Exists:

1. Formal model for probabilistic real-time rewrite theories

[Bentea-Ölveczky’11]

2. Obtain fully probabilistic “real-time” OO models [Meseguer et al’12]:

• message delay sampled probabilistically from dense interval

• zero probability that two message-triggered actions enabled

same time

• estimate performance, etc, of cloud computing systems and

DoS defense mechanisms

Need: theoretical model and language/tool support

• larger class of systems (message-triggered; flat OO; ad-hoc

timing)

• automatic transformation to PVeStA

62

COMBINING REAL-TIME AND PROBABILITIES (CONT.)

Exists:

1. Formal model for probabilistic real-time rewrite theories

[Bentea-Ölveczky’11]

2. Obtain fully probabilistic “real-time” OO models [Meseguer et al’12]:

• message delay sampled probabilistically from dense interval

• zero probability that two message-triggered actions enabled

same time

• estimate performance, etc, of cloud computing systems and

DoS defense mechanisms

Need: theoretical model and language/tool support

• larger class of systems (message-triggered; flat OO; ad-hoc

timing)

• automatic transformation to PVeStA

62

SYMBOLIC METHODS

• Dense time −→ symbolic methods important

• Soundness/completeness for non-time-robust theories

• events not at “fixed” times

• “Real-Time Maude modulo SMT”

• full reachability analysis for timed automata (?)

63

SYMBOLIC METHODS

• Dense time −→ symbolic methods important

• Soundness/completeness for non-time-robust theories

• events not at “fixed” times

• “Real-Time Maude modulo SMT”

• full reachability analysis for timed automata (?)

63

SYMBOLIC METHODS

• Dense time −→ symbolic methods important

• Soundness/completeness for non-time-robust theories

• events not at “fixed” times

• “Real-Time Maude modulo SMT”

• full reachability analysis for timed automata (?)

63

REWRITING MODULO SMT: COMPLETE REACHABILITY

FOR TIMED AUTOMATA (?)

vars x y z : Real .

crl < s1 ; x ; z > => < s2 ; 0/1 ; z > if x >= 2/1 = true .

crl < s1 ; x ; z > => < s1 ; x + y ; z + y > if x + y <= 4/1 = true [nonexec] .

crl < s2 ; x ; z > => < s3 ; x ; z > if x >= 1/1 = true .

crl < s2 ; x ; z > => < s2 ; x + y ; z + y > if x + y <= 3/1 = true [nonexec] .

crl < s3 ; x ; z > => < bad ; x ; z > if z >= 9/2 and z <= 11/2 = true .

rl < s3 ; x ; z > => < s1 ; 0/1 ; 0/1 > .
64

REWRITING MODULO SMT: COMPLETE REACHABILITY

FOR TIMED AUTOMATA (?) (CONT.)

Region reachable from some initial x-value?

Maude> smt-search [1] < s1 ; x ; 0/1 > =>* < bad ; y ; z >

such that z > y and z > 2/1 = true .

Solution 1

rewrites: 26 in 21ms cpu (21ms real) (1233 rewrites/second)

state: < bad ; 0/1 + #2-y:Real ; 0/1 + #1-y:Real + #2-y:Real >

empty substitution

where z > y and z > 2/1 and x + #1-y:Real <= 4/1 and x + #1-y:Real >= 2/1 and 0/1 + #2-y:Real <= 3/1 and 0/1 +

#2-y:Real >= 1/1 and (0/1 + #1-y:Real + #2-y:Real >= 9/2 and 0/1 + #1-y:Real + #2-y:Real <= 11/2) and (y ===

0/1 + #2-y:Real and z === 0/1 + #1-y:Real + #2-y:Real)

65

REFERENCE PAPERS ON REAL-TIME MAUDE

• Peter C. Ölveczky: Real-Time Maude and its Applications. In

Proc. WRLA 2014, volume 8663 of Lecture Notes in

Computer Science, Springer, 2014.

• Peter C. Ölveczky and José Meseguer: Semantics and

Pragmatics of Real-Time Maude. In volume 20(1/2) of

Higher-Order and Symbolic Computation, Springer 2007.

66

EXERCISE

In rate-monotonic scheduling, you have given a set of periodic

tasks, each with an execution time and period. When its period

ends, it starts a new period. Within each period, it must execute

for a total of its execution time. We assume that we have only one

processor. The task with the shortest period has the highest

priority to execute, and can preempt an executing task with a

lpwer priority. Assume that you can have tasks with the same

period/priority. Specify the rate-monotnic scheduling algorithm in

Real-Time Maude, and try model checking of a few examples to

check whetehr your task set is schedulable.

67

	Modeling and Analyzing Real-Time Systems with Real-Time Maude
	Modeling in Real-Time Maude
	Analysis in Real-Time Maude
	Real-Time Maude in Context

	Applications
	``Concrete'' Systems
	Formal Semantics and Analysis for MDE Languages

	Hybrid Systems
	Immediate Research Challenges

