
ISR 2019

2019 07 05

λ-calculus

lecture 1

Femke van Raamsdonk

http://www.few.vu.nl/~femke


overview

introduction

terms

reduction

fixed point combinators

Curry’s paradox

definability



overview

introduction

terms

reduction

fixed point combinators

Curry’s paradox

definability



λ-calculus

inventor: Alonzo Church (1936)

a language expressing functions or algorithms

concept of computability and basis of functional programming

a language expressing proofs

untyped and typed

http://en.wikipedia.org/wiki/Alonzo_Church


historical note: notation for functions

Frege defined the graph of a function (1893)

Russell and Whitehead and Russell (1910)

Schönfinkel defined function calculus (1920)

Curry defined combinary logic (1920)



Combinatory Logic (CL)

inventor Moses Schönfinkel (1924)

rewrite rules IX → X
(KX )Y → X

((SX )Y )Z → (X Z ) (Y Z )

rewriting I can be defined
S KK x → (K x) (K x)→ x

rewriting may be infinite
(S I I) (S I I)→ I (S I I) (I (S I I))→
(S I I) (I (S I I))→ (S I I) (S I I)

http://en.wikipedia.org/wiki/Moses_Schoenfinkel


play with combinators

define D = S I I

then D x =CL x x

define B = S (K S) K

then B f g x =CL f (g x)

define L = D (B D D)

then L =CL L L



extending and restricting

extending CL leads to first-order rewriting

restricting CL leads to studying the rule for S

extending λ leads to higher-order rewriting

slogan-like: λ : HRS = CL : TRS



overview

introduction

terms

reduction

fixed point combinators

Curry’s paradox

definability



notation for (anonymous) functions

mathematical notation:
f : nat→ nat
f (x) = square(x)

or also:
f : nat→ nat
f : x 7→ square(x)

lambda notation:
λx . square x

we start with the untyped λ-calculus



lambda terms: intuition

abstraction:

λx .M is the function mapping x to M

λx . x is the function mapping x to x

λx . square x is the function mapping x to square x

application:

F M is the application of the function F to its argument M

(not the result of applying)



lambda terms: inductive definition

we assume a countably infinite set of variables (x , y , z . . .)

sometimes we in addition assume a set of contstants

the set of λ-terms is defined inductively by the following clauses:

a variable x is a λ-term

a constant c is a λ-term

if M is a λ-term, then (λx .M) is a λ-term, called an abstraction

if F and M are λ-terms, then (F M) is a λ-term, called an application



famous terms

I = (λx . x) = λx . x

K = λx . (λy . x) = λx . λy . x

S = λx . λy . λz . (x z) (y z) = λx . λy . λz . x z (y z)

Ω = (λx . x x) (λx . x x)

omit outermost parentheses

application is associative to the left

abstraction is associative to the right

lambda extends to the right as far as possible



terms as trees

x M

λx

F M

@

� @

a subterm corresponds to a subtree

subterms of λx . y are λx . y and y



bound variables: definition

x is bound by the first λx above it in the term tree

examples: the underlined x is bound in

λx . x

λx . x x

(λx . x) x

λx . y x

λx . λx . x



free variables: definition

a variable that is not bound is free

alternatively: define recursively the set FV(M) of free variables of M:

FV(x) = {x}

FV(c) = ∅

FV(λx .M) = FV(M)\{x}

FV(F P) = FV(F ) ∪ FV(P)

a term is closed if it has no free variables



currying

reduce a function with several arguments to functions with single arguments

example:

f : x 7→ x + x becomes λx . x + x

g : (x , y) 7→ x + y becomes λx . λy . x + y , not λ(x , y). plus x y

partial application:

(λx . λy . x + y) 3

history:

due to Frege, Schönfinkel, and Curry

related to the isomorphism between A× B → C and A→ (B → C )



towards computation

we will use terms to compute, as for example in

(λx . f x) 5→β (f x)[x := 5] = f 5

the definition of substitution requires more preparation

intuitive meaning of M[x := N] :

the result of replacing in M all free occurrences of x by N



substitition: recursive definition

substitution in a variable or a constant:

x [x := N] = N

a[x := N] = a with a 6= x a variable or a constant

substitution in an application:

(P Q)[x := N] = (P[x := N]) (Q[x := N])

substitution in an abstraction:

(λx .P)[x := N] = λx .P

(λy .P)[x := N] = λy . (P[x := N]) if x 6= y and y 6∈ FV(N)

(λy .P)[x := N] = λz . (P[y := z ][x := N])
if x 6= y and z 6∈ FV(N) ∪ FV(P) and y ∈ FV(N))



substitution: examples

(λx . x)[x := c] = λx . x

(λx . y)[y := c] = λx . c

(λx . y)[y := x ] = λz . x

(λy . x (λw . v w x))[x := u v ] = λy . u v(λw . v w (u v))

(λy . x (λx . x))[x := λy . x y ] = λy .(λy . x y) (λx . x)



alpha conversion

intuition:

bound variables may be renamed

example:

λx . x =α λy . y

definition α-conversion axiom:

λx .M =α λy .M[x := y ] with y 6∈ FV (M)

definition α-equivalence relation =α: on terms

P =α Q if Q can be obtained from P

by finitely many ‘uses’ of the α-conversion axiom

that is: by finitely many renamings of bound variables in context



alpha equivalence classes

we identify α-equivalent λ-terms

just as we identify f : x 7→ x2 and f : y 7→ y2

and ∀x .P(x) is ∀y .P(y)

we work with equivalence classes modulo α



examples

which of the following pairs of terms are α-equivalent?

λx . x y and λy . y y

λx . x y and λu. u y

λx . x y and λx . x u

x (λx . x) and y (λy . y)



alpha-conversion and substitution: intuitive approach

we defined first substitution [x := P] and then α using substitution [x := y ]

an alternative intuitive approach:

define α as renaming of bound variables

work modulo α

define substitution M[x := N] using renaming of bound variables:

replace all free occurrences of x in M by N,

rename bound variables if necessary

example: (λx .y)[y := x ] =α (λx ′.y)[y := x ] = λx ′. x



now we know the statics of the lambda-calculus

we consider λ-terms modulo α-conversion

application and abstraction

bound and free variables

currying

substitution

we continue with the dynamics: β-reduction



overview

introduction

terms

reduction

fixed point combinators

Curry’s paradox

definability



definition beta reduction

the β-reduction rule: (λx .M)N →β M[x := N]

here we have the following:

x is a variable

M and N are terms

[x := N] is the substitution of N for x



definition beta reduction

the β-reduction rule: (λx .M)N →β M[x := N]

the beta-reduction relation is obtained using

M →β M ′

λx .M →β λx .M
′

M →β M ′

M N →β M ′N

N →β N ′

M N →β M N ′



beta reduction: examples

(λx . x) y →β x [x := y ] = y

(λx . x x) y →β (x x)[x := y ] = y y

(λx . x z) y →β (x z)[x := y ] = y z

(λx . z) y →β z [x := y ] = z

Ω = (λx . x x) (λx . x x)→β Ω

K I Ω→β K I Ω and also K I Ω→β (λy .I) Ω→β I



terminology and notation as for TRSs

β-redex

β-reduction step →β

β-reduction sequence or β-rewrite sequence →∗β

β-conversion =β

β-normal form (NF)

strongly normalizing (SN) or terminating

weakly normalizing (WN)



beta reduction

is a model of computation

is non-deterministic

however: gives unique normal forms

see: confluence

is non-terminating

however: there are normalizing strategies

see: strategies



we really need renaming

α is a source of problems but we cannot do without:

(λx . x x) (λs. λz . s z) →β

(λs. λz . s z) (λs. λz . s z) →β

λz . (λs. λz . s z) z →β

λz . λz ′. zz ′



De Bruijn notation

instead of names use a reference to the binding λ

λx . x is λ1

λx .λy .x is λλ 2



another rule: eta

λx .M x →η M if x not free in M

we do not have the step:
λx . x x →η x



overview

introduction

terms

reduction

fixed point combinators

Curry’s paradox

definability



fixed point

definition:

x ∈ A is a fixed point of f : A→ B if f (x) = x

examples:

0 and 1 are fixed points of f : R→ R with x 7→ x2

for λ-calculus:

M is a fixed point of F if F M =β M

example:

every term M is a fixed point of I because IM =β M



fixed point combinator

definition:

Y is a fixed point combinator if

F (Y F ) =β Y F for every λ-term F

informally:

we can use Y to construct a fixed point for a given term F



fixed point combinators

Curry’s fixed point combinator:

Y = λf . (λx . f (x x)) (λx . f (x x))

Turing’s fixed point combinator:

T = (λx . λy . y (x x y)) (λx . λy . y (x x y))



consider Curry’s fixed point combinator

for an arbirary F we have:

Y F = (λf . (λx . f (x x)) (λx . f (x x)))F
→β (λx .F (x x)) (λx .F (x x))
→β F ((λx .F (x x)) (λx .F (x x)))
← F ((λf . (λx . f (x x)) (λx . f (x x)))F )
= F (Y F )

and also:

F ((λx .F (x x)) (λx .F (x x)))→β F (F ((λx .F (x x)) (λx .F (x x))))



consider Turing’s fixed point combinator

for an arbitrary F we have:

TF = (λx . λy . y (x x y)) (λx . λy . y (x x y))F
→β (λy . y (t t y))F
→β F (ttF )
= F (TF )

with t = λx . λy . y (x x y)



example (Hindley)

question: define X such that X y =β X (a garbage dosposer)

X y =β X

follows from X =β λy .X

follows from X =β (λx . λy . x)X

follows from X =β Y (λx . λy . x)

so define X = Y (λx . λy . x)



example (Hindley)

question: define X such that X y z =β X z y (bureaucrat)

X y z =β X z y

follows from X = λy . λz .X z y

follows from X = (λx . λy . λz . x z y)X

follows from X = Y (λx . λy . λz . x z y)

so defined X = Y (λx . λy . λz . x z y)



overview

introduction

terms

reduction

fixed point combinators

Curry’s paradox

definability



inconsistency

Kleene and Rosser discovered in 1934 that

Church’s system and Curry’s combinatory logic are inconsistent

they encoded Richard’s paradox

Curry presented a new exposition of the paradox

then Curry showed inconsistency via Curry’s paradox



Church’s orginal system: terms

terms formed by application, so M N

terms formed by abstraction, so λx .M

a rule for changing the names of bound variables, so α-conversion

a rule for calculating the values of a function, so β-reduction



Church’s original system: logic

atomic constants for representing logical connectives and quantifiers

we write implication with → in infix notation

a notion of provability

modus ponens (MP): if A→ B and A provable then B provable

(A→ (A→ B))→ (A→ B) provable

if A is provable and A =β A′ then A′ is provable



notation

on the following three slides:

the logic part is in black

the part in Church’s sytem is in blue



tautology of prop1

(A→ (A→ B))→ (A→ B) is a tautology of first-order propositional logic:

A→ (A→ B) A
E →

A→ B A
B

A→ B
(A→ (A→ B))→ (A→ B)

we assume (A→ (A→ B))→ (A→ B) provable in Church’s system



next step

if A = A→ B then we have:

(A→ (A→ B))→ (A→ B)

A
A→ A =

A→ (A→ B)

A→ B

we define A = Y (λx . x → (x → B)) for an arbitrary B

then A =β (λx . x → (x → B))A =β A→ (A→ B)

we have (A→ (A→ B))→ (A→ B) provable (system)

using β we have A→ (A→ B) provable

using MP we have A→ B provable



next step

if A→ B provable and using A = A→ B then we have:

A→ B
A→ B =

A
B

we have A→ (A→ B) provable as shown on the previous slide

using β we have A provable

we have A→ B provable as shown on the previous slide

using MP we have B provable, and B was arbitrary



what now?

Church restricted attention to the part dealing with functions:

the λ-calculus

Curry had already shown

the corresponding part of his system to be consistent (1930)

Church and Rosser proved consistency of the λ-calculus in 1936

via what is known as the Church-Rosser theorem



overview

introduction

terms

reduction

fixed point combinators

Curry’s paradox

definability
booleans



expressive power

the λ-calculus is Turing-complete

Church’s thesis: everything that is computable

is definable in the pure untyped lambda calculus

we illustrate the expressive power

by considering the encoding of several data-types



booleans as lambda-terms: idea

we try to find:

two

different

closed

normal forms

permitting to calculate



booleans and negations as lambda terms: definition

definition of term for true

true = λxy . x

definition of term for false

false = λxy . y

negation

not = λx . x false true

indeed

not true =β (λx . x false true) true =β true false true =β false



define other operations on booleans

true = λxy . x

false = λxy . y

not = λx . x false true

ite = λbxy . b x y

and = λxy . x y false

or = λxy . x true y

xor = λxy . x (not y) y


	lecture 1
	introduction
	terms
	reduction
	fixed point combinators
	Curry's paradox
	definability
	booleans



