ISR 2019

20190705

λ-calculus
lecture 1
Femke van Raamsdonk

overview

- introduction
- terms
- reduction
- fixed point combinators
- Curry's paradox
- definability

overview

- introduction
- terms
- reduction
- fixed point combinators
- Curry's paradox
- definability

λ-calculus

inventor: Alonzo Church (1936)
a language expressing functions or algorithms
concept of computability and basis of functional programming
a language expressing proofs
untyped and typed

historical note: notation for functions

Frege defined the graph of a function (1893)
Russell and Whitehead and Russell (1910)
Schönfinkel defined function calculus (1920)
Curry defined combinary logic (1920)

Combinatory Logic (CL)

inventor
Moses Schönfinkel (1924)
rewrite rules
rewriting

$$
\begin{aligned}
\mathrm{I} X & \rightarrow X \\
(\mathrm{~K} X) Y & \rightarrow X \\
((\mathrm{SX}) Y) Z & \rightarrow(X Z)(Y Z)
\end{aligned}
$$

I can be defined
SKK $x \rightarrow(\mathrm{~K} x)(\mathrm{K} x) \rightarrow x$
rewriting may be infinite
$(\mathrm{SII})(\mathrm{SII}) \rightarrow \mathrm{I}(\mathrm{SII})(\mathrm{I}(\mathrm{SII})) \rightarrow$
$(S I I)(\mathrm{I}(\mathrm{SII})) \rightarrow(\mathrm{SII})(\mathrm{SII})$

play with combinators

define $D=$ SII
then $D x=C L x x$
define $B=\mathrm{S}(\mathrm{KS}) \mathrm{K}$
then $B f g x=C L f(g x)$
define $L=D(B D D)$
then $L=C L L L$

extending and restricting

extending CL leads to first-order rewriting
restricting $C L$ leads to studying the rule for S
extending λ leads to higher-order rewriting
slogan-like: $\lambda: \mathrm{HRS}=\mathrm{CL}: \mathrm{TRS}$

overview

- introduction
- terms
- reduction
- fixed point combinators
- Curry's paradox
- definability

notation for (anonymous) functions

mathematical notation:

$$
\begin{aligned}
& f: \text { nat } \rightarrow \text { nat } \\
& f(x)=\operatorname{square}(x)
\end{aligned}
$$

or also:

$$
\begin{aligned}
& f: \text { nat } \rightarrow \text { nat } \\
& f: x \mapsto \operatorname{square}(x)
\end{aligned}
$$

lambda notation:

$$
\lambda x . \text { square } x
$$

we start with the untyped λ-calculus

lambda terms: intuition

abstraction:
$\lambda x . M$ is the function mapping x to M
$\lambda x . x$ is the function mapping x to x
λx. square x is the function mapping x to square x
application:
$F M$ is the application of the function F to its argument M
(not the result of applying)

lambda terms: inductive definition

we assume a countably infinite set of variables $(x, y, z \ldots)$
sometimes we in addition assume a set of contstants
the set of λ-terms is defined inductively by the following clauses:
a variable x is a λ-term
a constant c is a λ-term
if M is a λ-term, then $(\lambda x . M)$ is a λ-term, called an abstraction
if F and M are λ-terms, then $(F M)$ is a λ-term, called an application

famous terms

$\mathrm{I}=(\lambda x \cdot x)=\lambda x \cdot x$
$\mathrm{K}=\lambda x \cdot(\lambda y, x)=\lambda x \cdot \lambda y \cdot x$
$\mathrm{S}=\lambda x \cdot \lambda y \cdot \lambda z \cdot(x z)(y z)=\lambda x \cdot \lambda y \cdot \lambda z \cdot x z(y z)$
$\Omega=(\lambda x . x x)(\lambda x . x x)$
omit outermost parentheses
application is associative to the left abstraction is associative to the right
lambda extends to the right as far as possible

terms as trees

a subterm corresponds to a subtree subterms of $\lambda x . y$ are $\lambda x . y$ and y

bound variables: definition

x is bound by the first λx above it in the term tree
examples: the underlined x is bound in
$\lambda x \cdot \underline{x}$
$\lambda x \cdot \underline{x} \underline{x}$
$(\lambda x \cdot \underline{x}) x$
$\lambda x \cdot y \underline{x}$
$\lambda x . \lambda x \cdot \underline{x}$

free variables: definition

a variable that is not bound is free
alternatively: define recursively the set $\mathrm{FV}(M)$ of free variables of M :

$$
\begin{aligned}
\mathrm{FV}(x) & =\{x\} \\
\mathrm{FV}(c) & =\emptyset \\
\mathrm{FV}(\lambda x \cdot M) & =\mathrm{FV}(M) \backslash\{x\} \\
\mathrm{FV}(F P) & =\mathrm{FV}(F) \cup \mathrm{FV}(P)
\end{aligned}
$$

a term is closed if it has no free variables

currying

reduce a function with several arguments to functions with single arguments example:
$f: x \mapsto x+x$ becomes $\lambda x . x+x$
$g:(x, y) \mapsto x+y$ becomes $\lambda x . \lambda y . x+y$, not $\lambda(x, y)$. plus $x y$
partial application:
$(\lambda x \cdot \lambda y \cdot x+y) 3$
history:
due to Frege, Schönfinkel, and Curry
related to the isomorphism between $A \times B \rightarrow C$ and $A \rightarrow(B \rightarrow C)$

towards computation

we will use terms to compute, as for example in

$$
(\lambda x . f x) 5 \rightarrow_{\beta}(f x)[x:=5]=f 5
$$

the definition of substitution requires more preparation
intuitive meaning of $M[x:=N]$:
the result of replacing in M all free occurrences of x by N

substitition: recursive definition

substitution in a variable or a constant:
$x[x:=N]=N$
$a[x:=N]=a$ with $a \neq x$ a variable or a constant
substitution in an application:
$(P Q)[x:=N]=(P[x:=N])(Q[x:=N])$
substitution in an abstraction:
$(\lambda x . P)[x:=N]=\lambda x . P$
$(\lambda y . P)[x:=N]=\lambda y .(P[x:=N])$ if $x \neq y$ and $y \notin \mathrm{FV}(N)$
$(\lambda y . P)[x:=N]=\lambda z .(P[y:=z][x:=N])$
if $x \neq y$ and $z \notin \mathrm{FV}(N) \cup \mathrm{FV}(P)$ and $y \in \mathrm{FV}(N))$

substitution: examples

$(\lambda x \cdot x)[x:=c]=\lambda x \cdot x$
$(\lambda x \cdot y)[y:=c]=\lambda x . c$
$(\lambda x \cdot y)[y:=x]=\lambda z \cdot x$
$(\lambda y \cdot x(\lambda w \cdot v w x))[x:=u v]=\lambda y \cdot u v(\lambda w \cdot v w(u v))$
$(\lambda y \cdot x(\lambda x \cdot x))[x:=\lambda y \cdot x y]=\lambda y \cdot(\lambda y \cdot x y)(\lambda x \cdot x)$

alpha conversion

intuition:
bound variables may be renamed
example:
$\lambda x \cdot x={ }_{\alpha} \lambda y \cdot y$
definition α-conversion axiom:
$\lambda x \cdot M={ }_{\alpha} \lambda y \cdot M[x:=y]$ with $y \notin F V(M)$
definition α-equivalence relation $={ }_{\alpha}$: on terms
$P={ }_{\alpha} Q$ if Q can be obtained from P
by finitely many 'uses' of the α-conversion axiom
that is: by finitely many renamings of bound variables in context

alpha equivalence classes

we identify α-equivalent λ-terms
just as we identify $f: x \mapsto x^{2}$ and $f: y \mapsto y^{2}$
and $\forall x . P(x)$ is $\forall y . P(y)$
we work with equivalence classes modulo α

examples

which of the following pairs of terms are α-equivalent?
$\lambda x . x y$ and $\lambda y . y y$
$\lambda x . x y$ and $\lambda u . u y$
$\lambda x . x y$ and $\lambda x . x u$
$x(\lambda x . x)$ and $y(\lambda y . y)$

alpha-conversion and substitution: intuitive approach

we defined first substitution $[x:=P]$ and then α using substitution $[x:=y]$
an alternative intuitive approach:
define α as renaming of bound variables
work modulo α
define substitution $M[x:=N]$ using renaming of bound variables:
replace all free occurrences of x in M by N,
rename bound variables if necessary
example: $(\lambda x \cdot y)[y:=x]={ }_{\alpha}\left(\lambda x^{\prime} \cdot y\right)[y:=x]=\lambda x^{\prime} \cdot x$

now we know the statics of the lambda-calculus

we consider λ-terms modulo α-conversion
application and abstraction
bound and free variables
currying
substitution
we continue with the dynamics: β-reduction

overview

- introduction
- terms
- reduction
- fixed point combinators
- Curry's paradox
- definability

definition beta reduction

the β-reduction rule: $(\lambda x . M) N \rightarrow_{\beta} M[x:=N]$
here we have the following:
x is a variable
M and N are terms
[$x:=N$] is the substitution of N for x

definition beta reduction

the β-reduction rule: $(\lambda x . M) N \rightarrow_{\beta} M[x:=N]$
the beta-reduction relation is obtained using

$$
\begin{gathered}
\frac{M \rightarrow_{\beta} M^{\prime}}{\lambda x . M \rightarrow_{\beta} \lambda x \cdot M^{\prime}} \\
\frac{M \rightarrow_{\beta} M^{\prime}}{M N \rightarrow_{\beta} M^{\prime} N} \\
\frac{N \rightarrow_{\beta} N^{\prime}}{M N \rightarrow_{\beta} M N^{\prime}}
\end{gathered}
$$

beta reduction: examples

$(\lambda x, x) y \rightarrow_{\beta} x[x:=y]=y$
$(\lambda x . x x) y \rightarrow_{\beta}(x x)[x:=y]=y y$
$(\lambda x . x z) y \rightarrow_{\beta}(x z)[x:=y]=y z$
$(\lambda x . z) y \rightarrow_{\beta} z[x:=y]=z$
$\Omega=(\lambda x \cdot x x)(\lambda x \cdot x x) \rightarrow_{\beta} \Omega$
$\mathrm{KI} \Omega \rightarrow_{\beta} \mathrm{KI} \Omega$ and also $\mathrm{KI} \Omega \rightarrow_{\beta}(\lambda y . \mathrm{I}) \Omega \rightarrow_{\beta} \mathrm{I}$

terminology and notation as for TRSs

β-redex
β-reduction step \rightarrow_{β}
β-reduction sequence or β-rewrite sequence \rightarrow_{β}^{*}
β-conversion $=\beta$
β-normal form (NF)
strongly normalizing (SN) or terminating
weakly normalizing (WN)

beta reduction

is a model of computation
is non-deterministic
however: gives unique normal forms
see: confluence
is non-terminating
however: there are normalizing strategies
see: strategies

we really need renaming

α is a source of problems but we cannot do without:

$$
\begin{array}{rll}
(\lambda x . x x)(\lambda s . \lambda z . s z) & \rightarrow_{\beta} \\
(\lambda s . \lambda z . s z)(\lambda s . \lambda z . s z) & \rightarrow_{\beta} \\
\lambda z .(\lambda s . \lambda z . s z) z & \rightarrow_{\beta} \\
\lambda z . \lambda z^{\prime} . z z^{\prime} &
\end{array}
$$

De Bruijn notation

instead of names use a reference to the binding λ
$\lambda x . x$ is $\lambda 1$
$\lambda x . \lambda y . x$ is $\lambda \lambda 2$

another rule: eta

$\lambda x . M x \rightarrow_{\eta} M \quad$ if x not free in M
we do not have the step:

$$
\lambda x . x x \rightarrow_{\eta} x
$$

overview

- introduction
- terms
- reduction
- fixed point combinators
- Curry's paradox
- definability

fixed point

definition:

$x \in A$ is a fixed point of $f: A \rightarrow B$ if $f(x)=x$
examples:
0 and 1 are fixed points of $f: \mathbb{R} \rightarrow \mathbb{R}$ with $x \mapsto x^{2}$
for λ-calculus:
M is a fixed point of F if $F M={ }_{\beta} M$
example:
every term M is a fixed point of I because $I M={ }_{\beta} M$

fixed point combinator

definition:

Y is a fixed point combinator if
$F(Y F)={ }_{\beta} Y F$ for every λ-term F
informally:
we can use Y to construct a fixed point for a given term F

fixed point combinators

Curry's fixed point combinator:

$$
\mathrm{Y}=\lambda f \cdot(\lambda x \cdot f(x x))(\lambda x \cdot f(x x))
$$

Turing's fixed point combinator:

$$
\mathrm{T}=(\lambda x \cdot \lambda y \cdot y(x x y))(\lambda x \cdot \lambda y \cdot y(x x y))
$$

consider Curry's fixed point combinator

for an arbirary F we have:

$$
\begin{aligned}
Y F & =(\lambda f \cdot(\lambda x \cdot f(x x))(\lambda x \cdot f(x x))) F \\
& \rightarrow_{\beta}(\lambda x \cdot F(x x))(\lambda x \cdot F(x x)) \\
& \rightarrow_{\beta} F((\lambda x \cdot F(x x))(\lambda x \cdot F(x x))) \\
& \leftarrow F((\lambda f \cdot(\lambda x \cdot f(x x))(\lambda x \cdot f(x x))) F) \\
& =F(Y F)
\end{aligned}
$$

and also:

$$
F((\lambda x . F(x x))(\lambda x . F(x x))) \rightarrow_{\beta} F(F((\lambda x . F(x x))(\lambda x . F(x x))))
$$

consider Turing's fixed point combinator

for an arbitrary F we have:

$$
\begin{aligned}
\mathrm{T} F & =(\lambda x \cdot \lambda y \cdot y(x x y))(\lambda x \cdot \lambda y \cdot y(x x y)) F \\
& \rightarrow_{\beta}(\lambda y \cdot y(\mathrm{tty})) F \\
& \rightarrow_{\beta} F(\mathrm{tt} F) \\
& =F(\mathrm{~T} F)
\end{aligned}
$$

with $\mathrm{t}=\lambda x \cdot \lambda y \cdot y(x x y)$

example (Hindley)

question: define X such that $X y={ }_{\beta} X$ (a garbage dosposer)
$X y={ }_{\beta} X$
follows from $X={ }_{\beta} \lambda y . X$
follows from $X={ }_{\beta}(\lambda x, \lambda y . x) X$
follows from $X={ }_{\beta} Y(\lambda x, \lambda y, x)$
so define $X=Y(\lambda x, \lambda y \cdot x)$

example (Hindley)

question: define X such that $X y z={ }_{\beta} X z y$ (bureaucrat)
$X y z={ }_{\beta} X z y$
follows from $X=\lambda y . \lambda z . X z y$
follows from $X=(\lambda x, \lambda y, \lambda z, x z y) X$
follows from $X=Y(\lambda x \cdot \lambda y \cdot \lambda z \cdot x z y)$
so defined $X=Y(\lambda x, \lambda y . \lambda z . x z y)$

overview

- introduction
- terms
- reduction
- fixed point combinators
- Curry's paradox
- definability

inconsistency

Kleene and Rosser discovered in 1934 that
Church's system and Curry's combinatory logic are inconsistent they encoded Richard's paradox

Curry presented a new exposition of the paradox then Curry showed inconsistency via Curry's paradox

Church's orginal system: terms

terms formed by application, so $M N$
terms formed by abstraction, so $\lambda x . M$
a rule for changing the names of bound variables, so α-conversion
a rule for calculating the values of a function, so β-reduction

Church's original system: logic

atomic constants for representing logical connectives and quantifiers
we write implication with \rightarrow in infix notation
a notion of provability
modus ponens (MP): if $A \rightarrow B$ and A provable then B provable $(A \rightarrow(A \rightarrow B)) \rightarrow(A \rightarrow B)$ provable
if A is provable and $A={ }_{\beta} A^{\prime}$ then A^{\prime} is provable

notation

on the following three slides:
the logic part is in black
the part in Church's sytem is in blue

tautology of prop1

$(A \rightarrow(A \rightarrow B)) \rightarrow(A \rightarrow B)$ is a tautology of first-order propositional logic:

$$
\begin{array}{r}
A \rightarrow(A \rightarrow B) \quad A \\
\frac{A \rightarrow B}{} \frac{B}{A \rightarrow B} \\
\frac{A \rightarrow(A \rightarrow B)) \rightarrow(A \rightarrow B)}{(A \rightarrow B}
\end{array}
$$

we assume $(A \rightarrow(A \rightarrow B)) \rightarrow(A \rightarrow B)$ provable in Church's system

next step

if $A=A \rightarrow B$ then we have:

$$
\frac{(A \rightarrow(A \rightarrow B)) \rightarrow(A \rightarrow B)}{A \rightarrow B}=
$$

we define $A=\mathrm{Y}(\lambda x . x \rightarrow(x \rightarrow B))$ for an arbitrary B
then $A={ }_{\beta}(\lambda x . x \rightarrow(x \rightarrow B)) A={ }_{\beta} A \rightarrow(A \rightarrow B)$
we have $(A \rightarrow(A \rightarrow B)) \rightarrow(A \rightarrow B)$ provable (system)
using β we have $A \rightarrow(A \rightarrow B)$ provable
using MP we have $A \rightarrow B$ provable

next step

if $A \rightarrow B$ provable and using $A=A \rightarrow B$ then we have:

$$
\frac{A \rightarrow B \quad \frac{A \rightarrow B}{A}}{B}=
$$

we have $A \rightarrow(A \rightarrow B)$ provable as shown on the previous slide using β we have A provable we have $A \rightarrow B$ provable as shown on the previous slide using MP we have B provable, and B was arbitrary

what now?

Church restricted attention to the part dealing with functions: the λ-calculus

Curry had already shown
the corresponding part of his system to be consistent (1930)

Church and Rosser proved consistency of the λ-calculus in 1936 via what is known as the Church-Rosser theorem

overview

- introduction
- terms
- reduction
- fixed point combinators
- Curry's paradox
- definability
- booleans

expressive power

the λ-calculus is Turing-complete

Church's thesis: everything that is computable is definable in the pure untyped lambda calculus
we illustrate the expressive power
by considering the encoding of several data-types

booleans as lambda-terms: idea

we try to find:
two
different
closed
normal forms
permitting to calculate

booleans and negations as lambda terms: definition

definition of term for true

$$
\text { true }=\lambda x y . x
$$

definition of term for false
false $=\lambda x y . y$
negation
not $=\lambda x . x$ false true
indeed
not true $={ }_{\beta}(\lambda x . x$ false true $)$ true $={ }_{\beta}$ true false true $={ }_{\beta}$ false

define other operations on booleans

$$
\begin{aligned}
& \text { true }=\lambda x y \cdot x \\
& \text { false }=\lambda x y \cdot y \\
& \text { not }=\lambda x . x \text { false true } \\
& \text { ite }=\lambda b x y \cdot b x y \\
& \text { and }=\lambda x y \cdot x y \text { false } \\
& \text { or }=\lambda x y . x \text { true } y \\
& \text { xor }=\lambda x y \cdot x(\text { not } y) y
\end{aligned}
$$

