ISR 2019
2019 07 05
A-calculus

lecture 1

Femke van Raamsdonk

http://www.few.vu.nl/~femke

overview

introduction

terms

reduction

fixed point combinators
Curry’s paradox

definability

overview

@ introduction

M-calculus

L
inventor: Alonzo Church (1936)
a language expressing functions or algorithms
concept of computability and basis of functional programming
a language expressing proofs

untyped and typed

http://en.wikipedia.org/wiki/Alonzo_Church

historical note: notation for functions

Frege defined the graph of a function (1893)
Russell and Whitehead and Russell (1910)
Schonfinkel defined function calculus (1920)

Curry defined combinary logic (1920)

Combinatory Logic (CL) ?
inventor Moses Schonfinkel (1924)

rewrite rules IX —- X
(KX)Y — X
(SX)Y)z2 — (X2)(Y2)

rewriting | can be defined
SKKx — (Kx) (Kx) — x

rewriting may be infinite
(SIS = 1S (I(S1) —
(SIHA(sIn) = (stn(sin

http://en.wikipedia.org/wiki/Moses_Schoenfinkel

play with combinators

define D =S|

then Dx =¢; xx

define B=S(KS)K

then Bf gx =¢1 f (g x)

define L = D (B D D)

then L=¢ LL

extending and restricting

extending CL leads to first-order rewriting
restricting CL leads to studying the rule for S
extending A leads to higher-order rewriting

slogan-like: A\ : HRS = CL : TRS

overview

@ terms

notation for (anonymous) functions

mathematical notation:
f : nat — nat

f(x) = square(x)
or also:

f : nat — nat

f : x — square(x)

lambda notation:
AX.square x

we start with the untyped A-calculus

lambda terms: intuition

abstraction:
Ax. M is the function mapping x to M
Ax. x is the function mapping x to x

AXx.square x is the function mapping x to square x

application:
F M is the application of the function F to its argument M

(not the result of applying)

lambda terms: inductive definition

we assume a countably infinite set of variables (x,y,z...)

sometimes we in addition assume a set of contstants

the set of A-terms is defined inductively by the following clauses:
a variable x is a A-term
a constant c is a A-term
if M is a A\-term, then (Ax. M) is a A-term, called an abstraction

if F and M are \-terms, then (F M) is a A-term, called an application

famous terms

I = (Ax. x) = Ax. x
K= Ax.(Ay.x) = Ax. \y. x
S=Xx.Ay.Az.(xz)(yz) = Ax. Ay. Az.xz (y 2)

Q = (Ax. x x) (Ax. x x)

omit outermost parentheses
application is associative to the left
abstraction is associative to the right

lambda extends to the right as far as possible

terms as trees

AX

a subterm corresponds to a subtree

subterms of Ax.y are Ax.y and y

bound variables: definition

x is bound by the first Ax above it in the term tree
examples: the underlined x is bound in
AX. X

AX. X X
(Ax. x) x
AX. Yy X

AX. AX. X

free variables: definition

a variable that is not bound is free

alternatively: define recursively the set FV(M) of free variables of M:

FV(x) = {x}

FV(c) = 0
FVOx. M) = FV(M)\{x}
FV(FP) = FV(F)UFV(P)

a term is closed if it has no free variables

currying

reduce a function with several arguments to functions with single arguments
example:

f: x — x+ x becomes Ax.x + x

g : (x,y) — x4y becomes Ax. A\y.x + y, not A(x,y).plusxy

partial application:

(M. Ay.x+y)3

history:

due to Frege, Schonfinkel, and Curry

related to the isomorphism between Ax B — C and A — (B — ()

towards computation

we will use terms to compute, as for example in
(M. fx)5 =5 (fx)[x :=5]="f5
the definition of substitution requires more preparation

intuitive meaning of M[x := N]| :

the result of replacing in M all free occurrences of x by N

substitition: recursive definition

substitution in a variable or a constant:

x[x :=N]=N

a[x := N] = a with a # x a variable or a constant
substitution in an application:

(P Q)lx == N] = (Plx == N]) (Q[x := N])

substitution in an abstraction:

(Ax. P)[x .= N] = Xx. P

(Ay.P)[x := N] = Ay.(P[x:=N]) if x# y and y & FV(N)

(Ay.P)[x := N] = Xz.(P[y := z][x := N])
if x# y and z € FV(N) UFV(P) and y € FV(N))

substitution: examples

Ax. x)[x = c] = Ax.x
Ayl =] = A
x.y)ly ==x] = Az.x

Ay.x(Aw.vwx))[x :=uv] = Ay.uv(Aw.vw (uv))
(

(
(
(A
(
(A x (Ax. x))[x == Ay.xy] = Ay.(Ay.xy) (Ax. x)

alpha conversion

intuition:
bound variables may be renamed

example:

AX. X =q AY.y

definition a-conversion axiom:

Ax. M =, A\y. M[x := y] with y & FV(M)
definition a-equivalence relation =,: on terms
P =, Q if Q can be obtained from P

by finitely many ‘uses’ of the a-conversion axiom

that is: by finitely many renamings of bound variables in context

alpha equivalence classes

we identify a-equivalent A-terms
just as we identify f : x — x% and f : y — y?

and Vx. P(x) is Vy. P(y)

we work with equivalence classes modulo «

examples

which of the following pairs of terms are a-equivalent?

Ax.xy and A\y.yy
Ax.xy and Au.uy
Ax.xy and Ax.xu

x(Ax.x) and y (Ay.y)

alpha-conversion and substitution: intuitive approach

we defined first substitution [x := P] and then « using substitution [x := y]

an alternative intuitive approach:

define « as renaming of bound variables

work modulo «

define substitution M[x := N] using renaming of bound variables:
replace all free occurrences of x in M by N,

rename bound variables if necessary

example: (Ax.y)[y := x] =a (A .y)[ly == x] = M\ . x

now we know the statics of the lambda-calculus

we consider A\-terms modulo a-conversion

application and abstraction
bound and free variables
currying

substitution

we continue with the dynamics: (-reduction

overview

@ reduction

definition beta reduction

the [-reduction rule: (Ax. M) N — 5 M[x := N|

here we have the following:
x is a variable
M and N are terms

[x := N] is the substitution of N for x

definition beta reduction

the fS-reduction rule: (Ax. M) N —3 M[x := N]

the beta-reduction relation is obtained using

M —>5 M’
Ax. M —5 Ax. M’

M—)g M’
MN =5 M N

N—)g N
MN =5 MN’

beta reduction: examples

(Ax.x)y =g x|x == y] =
(Ax.xx)y =5 (xx)[x == y] =
(\x.x2)y =5 (x2)[x = y] =
(\x.2)y =g zlx:=y] =z

Q = (Mx. xx) (Ax. xx) =5 Q
K

12 =5 KIQ and also KIQ =5 (Ay.1)Q =3 |

terminology and notation as for TRSs

[B-redex

B-reduction step — 3

[-reduction sequence or [3-rewrite sequence —>7;,
B-conversion =g

B-normal form (NF)

strongly normalizing (SN) or terminating

weakly normalizing (WN)

beta reduction

is a model of computation
is non-deterministic
however: gives unique normal forms

see: confluence

is non-terminating
however: there are normalizing strategies

see: strategies

we really need renaming

« is a source of problems but we cannot do without:

(Ax.xx)(As.Az.52) —p
(As.Az.sz)(Ns.Az.52) —p
Az.(As.hz.52)z —p

Az.\Z'. zZ'

De Bruijn notation

instead of names use a reference to the binding A
Ax.x is Al

AXAY.X is A2

another rule: eta

Ax.Mx —, M if x not freein M

we do not have the step:
AX. XX =y X

overview

o fixed point combinators

fixed point
definition:

x € Ais a fixed point of f : A — B if f(x) = x

examples:

0 and 1 are fixed points of f : R — R with x — x2

for A-calculus:

M is a fixed point of F if FM =g M

example:

every term M is a fixed point of | because IM =3 M

fixed point combinator

definition:
Y is a fixed point combinator if

F(Y F) =3 Y F for every A\-term F

informally:

we can use Y to construct a fixed point for a given term F

fixed point combinators

Curry’'s fixed point combinator:

Y = M. (Ax. f(xx)) (Ax. f (xx))

Turing's fixed point combinator:

T=(AxAy.y(xxy)) (Ax.Ay.y (xxy))

consider Curry's fixed point combinator

for an arbirary F we have:

YF = (M.(Mx.f(xx))(Ax.f(xx)))F
—5 (Ax. F(xx))(Ax. F (xx))
—p ((Ax. F (xx)) (Ax. F (xx)))

F
— F((Mf.(Ax.f(xx))(Ax.f(xx)))F)
F(YF)

and also:

F ((Ax. F (xx)) (Ax. F (xx))) = F (F (Ax. F (xx)) (Ax. F (xx))))

consider Turing's fixed point combinator

for an arbitrary F we have:

TF = (A Ay.y(xxy))(Ax.Ay.y(xxy))F

—g (Ay.y(tty))F
—g F(ttF)
= F(TF)

with t = Ax. Ay.y (xx y)

example (Hindley)

question: define X such that X y =g X (a garbage dosposer)

Xy=3X

follows from X =g Ay. X
follows from X =3 (Ax. Ay.x) X
follows from X =3 Y (Ax. Ay. x)

so define X =Y (Ax. Ay. x)

example (Hindley)

question: define X such that Xy z =g X zy (bureaucrat)

Xyz=3Xzy

follows from X = Ay. A\z. X zy
follows from X = (Ax. A\y. A\z.xzy) X
follows from X =Y (Ax. Ay. A\z. xz y)

so defined X =Y (Ax. A\y.Az. xzy)

overview

@ Curry’s paradox

inconsistency

Kleene and Rosser discovered in 1934 that

Church's system and Curry's combinatory logic are inconsistent
they encoded Richard's paradox

Curry presented a new exposition of the paradox

then Curry showed inconsistency via Curry's paradox

Church’s orginal system: terms

terms formed by application, so M N
terms formed by abstraction, so Ax. M
a rule for changing the names of bound variables, so a-conversion

a rule for calculating the values of a function, so S-reduction

Church’s original system: logic

atomic constants for representing logical connectives and quantifiers
we write implication with — in infix notation

a notion of provability

modus ponens (MP): if A — B and A provable then B provable

(A— (A— B)) — (A— B) provable

if A'is provable and A =3 A’ then A’ is provable

notation

on the following three slides:

the logic part is in black

the part in Church’s sytem is in blue

tautology of propl

(A— (A— B)) = (A — B) is a tautology of first-order propositional logic:

A— (A— B) A
AS B E= 4
B
A— B
(A-(A—B))—(A— B)

we assume (A — (A — B)) — (A — B) provable in Church’s system

next step

if A= A — B then we have:

A
A— A _
(A= (A= B))—(A— B) A— (A= B)
A— B

we define A=Y (Ax.x — (x — B)) for an arbitrary B
then A=35 (Ax.x = (x =+ B))A=3 A— (A= B)

we have (A — (A — B)) — (A — B) provable (system)
using 3 we have A — (A — B) provable

using MP we have A — B provable

next step

if A— B provable and using A= A — B then we have:

A— B
A— B A
B

we have A — (A — B) provable as shown on the previous slide
using 3 we have A provable
we have A — B provable as shown on the previous slide

using MP we have B provable, and B was arbitrary

what now?

Church restricted attention to the part dealing with functions:

the A-calculus

Curry had already shown

the corresponding part of his system to be consistent (1930)

Church and Rosser proved consistency of the A-calculus in 1936

via what is known as the Church-Rosser theorem

overview

o definability
e booleans

expressive power

the A-calculus is Turing-complete

Church’s thesis: everything that is computable

is definable in the pure untyped lambda calculus

we illustrate the expressive power

by considering the encoding of several data-types

booleans as lambda-terms:

we try to find:
two

different
closed

normal forms

permitting to calculate

idea

booleans and negations as lambda terms: definition
definition of term for true

true = Axy. x

definition of term for false

false = Axy.y

negation

not = A\x. x false true

indeed

nottrue =3 (Ax. x false true) true =g true false true =g false

define other operations on booleans

true = Axy. x
false = Axy.y

not = Ax. x false true

ite = Abxy.bxy
and = Axy. x y false
or = Axy.xtruey

xor = Axy.x (noty)y

	lecture 1
	introduction
	terms
	reduction
	fixed point combinators
	Curry's paradox
	definability
	booleans

