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λ-calculus

inventor: Alonzo Church (1936)

a language expressing functions or algorithms

concept of computability and basis of functional programming

a language expressing proofs

untyped and typed

http://en.wikipedia.org/wiki/Alonzo_Church


historical note: notation for functions

Frege defined the graph of a function (1893)

Russell and Whitehead and Russell (1910)

Schönfinkel defined function calculus (1920)

Curry defined combinary logic (1920)



Combinatory Logic (CL)

inventor Moses Schönfinkel (1924)

rewrite rules IX → X
(KX )Y → X

((SX )Y )Z → (X Z ) (Y Z )

rewriting I can be defined
S KK x → (K x) (K x)→ x

rewriting may be infinite
(S I I) (S I I)→ I (S I I) (I (S I I))→
(S I I) (I (S I I))→ (S I I) (S I I)

http://en.wikipedia.org/wiki/Moses_Schoenfinkel


play with combinators

define D = S I I

then D x =CL x x

define B = S (K S) K

then B f g x =CL f (g x)

define L = D (B D D)

then L =CL L L



extending and restricting

extending CL leads to first-order rewriting

restricting CL leads to studying the rule for S

extending λ leads to higher-order rewriting

slogan-like: λ : HRS = CL : TRS
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notation for (anonymous) functions

mathematical notation:
f : nat→ nat
f (x) = square(x)

or also:
f : nat→ nat
f : x 7→ square(x)

lambda notation:
λx . square x

we start with the untyped λ-calculus



lambda terms: intuition

abstraction:

λx .M is the function mapping x to M

λx . x is the function mapping x to x

λx . square x is the function mapping x to square x

application:

F M is the application of the function F to its argument M

(not the result of applying)



lambda terms: inductive definition

we assume a countably infinite set of variables (x , y , z . . .)

sometimes we in addition assume a set of contstants

the set of λ-terms is defined inductively by the following clauses:

a variable x is a λ-term

a constant c is a λ-term

if M is a λ-term, then (λx .M) is a λ-term, called an abstraction

if F and M are λ-terms, then (F M) is a λ-term, called an application



famous terms

I = (λx . x) = λx . x

K = λx . (λy . x) = λx . λy . x

S = λx . λy . λz . (x z) (y z) = λx . λy . λz . x z (y z)

Ω = (λx . x x) (λx . x x)

omit outermost parentheses

application is associative to the left

abstraction is associative to the right

lambda extends to the right as far as possible



terms as trees

x M

λx

F M

@

� @

a subterm corresponds to a subtree

subterms of λx . y are λx . y and y



bound variables: definition

x is bound by the first λx above it in the term tree

examples: the underlined x is bound in

λx . x

λx . x x

(λx . x) x

λx . y x

λx . λx . x



free variables: definition

a variable that is not bound is free

alternatively: define recursively the set FV(M) of free variables of M:

FV(x) = {x}

FV(c) = ∅

FV(λx .M) = FV(M)\{x}

FV(F P) = FV(F ) ∪ FV(P)

a term is closed if it has no free variables



currying

reduce a function with several arguments to functions with single arguments

example:

f : x 7→ x + x becomes λx . x + x

g : (x , y) 7→ x + y becomes λx . λy . x + y , not λ(x , y). plus x y

partial application:

(λx . λy . x + y) 3

history:

due to Frege, Schönfinkel, and Curry

related to the isomorphism between A× B → C and A→ (B → C )



towards computation

we will use terms to compute, as for example in

(λx . f x) 5→β (f x)[x := 5] = f 5

the definition of substitution requires more preparation

intuitive meaning of M[x := N] :

the result of replacing in M all free occurrences of x by N



substitition: recursive definition

substitution in a variable or a constant:

x [x := N] = N

a[x := N] = a with a 6= x a variable or a constant

substitution in an application:

(P Q)[x := N] = (P[x := N]) (Q[x := N])

substitution in an abstraction:

(λx .P)[x := N] = λx .P

(λy .P)[x := N] = λy . (P[x := N]) if x 6= y and y 6∈ FV(N)

(λy .P)[x := N] = λz . (P[y := z ][x := N])
if x 6= y and z 6∈ FV(N) ∪ FV(P) and y ∈ FV(N))



substitution: examples

(λx . x)[x := c] = λx . x

(λx . y)[y := c] = λx . c

(λx . y)[y := x ] = λz . x

(λy . x (λw . v w x))[x := u v ] = λy . u v(λw . v w (u v))

(λy . x (λx . x))[x := λy . x y ] = λy .(λy . x y) (λx . x)



alpha conversion

intuition:

bound variables may be renamed

example:

λx . x =α λy . y

definition α-conversion axiom:

λx .M =α λy .M[x := y ] with y 6∈ FV (M)

definition α-equivalence relation =α: on terms

P =α Q if Q can be obtained from P

by finitely many ‘uses’ of the α-conversion axiom

that is: by finitely many renamings of bound variables in context



alpha equivalence classes

we identify α-equivalent λ-terms

just as we identify f : x 7→ x2 and f : y 7→ y2

and ∀x .P(x) is ∀y .P(y)

we work with equivalence classes modulo α



examples

which of the following pairs of terms are α-equivalent?

λx . x y and λy . y y

λx . x y and λu. u y

λx . x y and λx . x u

x (λx . x) and y (λy . y)



alpha-conversion and substitution: intuitive approach

we defined first substitution [x := P] and then α using substitution [x := y ]

an alternative intuitive approach:

define α as renaming of bound variables

work modulo α

define substitution M[x := N] using renaming of bound variables:

replace all free occurrences of x in M by N,

rename bound variables if necessary

example: (λx .y)[y := x ] =α (λx ′.y)[y := x ] = λx ′. x



now we know the statics of the lambda-calculus

we consider λ-terms modulo α-conversion

application and abstraction

bound and free variables

currying

substitution

we continue with the dynamics: β-reduction
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definition beta reduction

the β-reduction rule: (λx .M)N →β M[x := N]

here we have the following:

x is a variable

M and N are terms

[x := N] is the substitution of N for x



definition beta reduction

the β-reduction rule: (λx .M)N →β M[x := N]

the beta-reduction relation is obtained using

M →β M ′

λx .M →β λx .M
′

M →β M ′

M N →β M ′N

N →β N ′

M N →β M N ′



beta reduction: examples

(λx . x) y →β x [x := y ] = y

(λx . x x) y →β (x x)[x := y ] = y y

(λx . x z) y →β (x z)[x := y ] = y z

(λx . z) y →β z [x := y ] = z

Ω = (λx . x x) (λx . x x)→β Ω

K I Ω→β K I Ω and also K I Ω→β (λy .I) Ω→β I



terminology and notation as for TRSs

β-redex

β-reduction step →β

β-reduction sequence or β-rewrite sequence →∗β

β-conversion =β

β-normal form (NF)

strongly normalizing (SN) or terminating

weakly normalizing (WN)



beta reduction

is a model of computation

is non-deterministic

however: gives unique normal forms

see: confluence

is non-terminating

however: there are normalizing strategies

see: strategies



we really need renaming

α is a source of problems but we cannot do without:

(λx . x x) (λs. λz . s z) →β

(λs. λz . s z) (λs. λz . s z) →β

λz . (λs. λz . s z) z →β

λz . λz ′. zz ′



De Bruijn notation

instead of names use a reference to the binding λ

λx . x is λ1

λx .λy .x is λλ 2



another rule: eta

λx .M x →η M if x not free in M

we do not have the step:
λx . x x →η x
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fixed point

definition:

x ∈ A is a fixed point of f : A→ B if f (x) = x

examples:

0 and 1 are fixed points of f : R→ R with x 7→ x2

for λ-calculus:

M is a fixed point of F if F M =β M

example:

every term M is a fixed point of I because IM =β M



fixed point combinator

definition:

Y is a fixed point combinator if

F (Y F ) =β Y F for every λ-term F

informally:

we can use Y to construct a fixed point for a given term F



fixed point combinators

Curry’s fixed point combinator:

Y = λf . (λx . f (x x)) (λx . f (x x))

Turing’s fixed point combinator:

T = (λx . λy . y (x x y)) (λx . λy . y (x x y))



consider Curry’s fixed point combinator

for an arbirary F we have:

Y F = (λf . (λx . f (x x)) (λx . f (x x)))F
→β (λx .F (x x)) (λx .F (x x))
→β F ((λx .F (x x)) (λx .F (x x)))
← F ((λf . (λx . f (x x)) (λx . f (x x)))F )
= F (Y F )

and also:

F ((λx .F (x x)) (λx .F (x x)))→β F (F ((λx .F (x x)) (λx .F (x x))))



consider Turing’s fixed point combinator

for an arbitrary F we have:

TF = (λx . λy . y (x x y)) (λx . λy . y (x x y))F
→β (λy . y (t t y))F
→β F (ttF )
= F (TF )

with t = λx . λy . y (x x y)



example (Hindley)

question: define X such that X y =β X (a garbage dosposer)

X y =β X

follows from X =β λy .X

follows from X =β (λx . λy . x)X

follows from X =β Y (λx . λy . x)

so define X = Y (λx . λy . x)



example (Hindley)

question: define X such that X y z =β X z y (bureaucrat)

X y z =β X z y

follows from X = λy . λz .X z y

follows from X = (λx . λy . λz . x z y)X

follows from X = Y (λx . λy . λz . x z y)

so defined X = Y (λx . λy . λz . x z y)
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inconsistency

Kleene and Rosser discovered in 1934 that

Church’s system and Curry’s combinatory logic are inconsistent

they encoded Richard’s paradox

Curry presented a new exposition of the paradox

then Curry showed inconsistency via Curry’s paradox



Church’s orginal system: terms

terms formed by application, so M N

terms formed by abstraction, so λx .M

a rule for changing the names of bound variables, so α-conversion

a rule for calculating the values of a function, so β-reduction



Church’s original system: logic

atomic constants for representing logical connectives and quantifiers

we write implication with → in infix notation

a notion of provability

modus ponens (MP): if A→ B and A provable then B provable

(A→ (A→ B))→ (A→ B) provable

if A is provable and A =β A′ then A′ is provable



notation

on the following three slides:

the logic part is in black

the part in Church’s sytem is in blue



tautology of prop1

(A→ (A→ B))→ (A→ B) is a tautology of first-order propositional logic:

A→ (A→ B) A
E →

A→ B A
B

A→ B
(A→ (A→ B))→ (A→ B)

we assume (A→ (A→ B))→ (A→ B) provable in Church’s system



next step

if A = A→ B then we have:

(A→ (A→ B))→ (A→ B)

A
A→ A =

A→ (A→ B)

A→ B

we define A = Y (λx . x → (x → B)) for an arbitrary B

then A =β (λx . x → (x → B))A =β A→ (A→ B)

we have (A→ (A→ B))→ (A→ B) provable (system)

using β we have A→ (A→ B) provable

using MP we have A→ B provable



next step

if A→ B provable and using A = A→ B then we have:

A→ B
A→ B =

A
B

we have A→ (A→ B) provable as shown on the previous slide

using β we have A provable

we have A→ B provable as shown on the previous slide

using MP we have B provable, and B was arbitrary



what now?

Church restricted attention to the part dealing with functions:

the λ-calculus

Curry had already shown

the corresponding part of his system to be consistent (1930)

Church and Rosser proved consistency of the λ-calculus in 1936

via what is known as the Church-Rosser theorem
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expressive power

the λ-calculus is Turing-complete

Church’s thesis: everything that is computable

is definable in the pure untyped lambda calculus

we illustrate the expressive power

by considering the encoding of several data-types



booleans as lambda-terms: idea

we try to find:

two

different

closed

normal forms

permitting to calculate



booleans and negations as lambda terms: definition

definition of term for true

true = λxy . x

definition of term for false

false = λxy . y

negation

not = λx . x false true

indeed

not true =β (λx . x false true) true =β true false true =β false



define other operations on booleans

true = λxy . x

false = λxy . y

not = λx . x false true

ite = λbxy . b x y

and = λxy . x y false

or = λxy . x true y

xor = λxy . x (not y) y
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