ISR 2019

20190706
λ-calculus

lecture 2
Femke van Raamsdonk

overview

- definability
- confluence
- simply typed lambda calculus
- strategies

overview

- definability
- natural numbers
- pairs
- lists
- recursive functions
- confluence
- simply typed lambda calculus
- strategies

expressive power

the λ-calculus is Turing-complete

Church's thesis: everything that is computable is definable in the pure untyped lambda calculus
we illustrate the expressive power
by considering the encoding of several data-types

natural numbers as lambda terms

we try to find:
inifinitely many
different
closed
normal forms
permitting to calculate

Church numerals

numerals

$$
\begin{aligned}
& c_{0}=\lambda s \cdot \lambda z \cdot z \\
& c_{1}=\lambda s \cdot \lambda z \cdot s z \\
& c_{2}=\lambda s \cdot \lambda z \cdot s(s z) \\
& c_{3}=\lambda s \cdot \lambda z \cdot s(s(s z)) \\
& c_{4}=\lambda s \cdot \lambda z \cdot s(s(s(s z)))
\end{aligned}
$$

$$
c_{n}=\lambda s \cdot \lambda z \cdot s^{n}(z)
$$

successor

$$
\mathrm{S}=\lambda x \cdot \lambda s z \cdot s(x s z)
$$

indeed

$$
S c_{0}=(\lambda x . \lambda s . \lambda z . s(x s z)) c_{0}={ }_{\beta} \lambda s z .\left(\lambda s^{\prime} . \lambda z^{\prime} . z^{\prime}\right) s(s z)={ }_{\beta} \lambda s z . s z
$$

define other operations

$$
\begin{aligned}
c_{0} & =\lambda s \cdot \lambda z \cdot z \\
c_{1} & =\lambda s \cdot \lambda z \cdot s z \\
c_{2} & =\lambda s \cdot \lambda z \cdot s(s z) \\
c_{3} & =\lambda s \cdot \lambda z \cdot s(s(s z)) \\
c_{4} & =\lambda s \cdot \lambda z \cdot s(s(s(s z))) \\
& \vdots \\
c_{n} & =\lambda s \cdot \lambda z \cdot s^{n}(z) \\
\mathrm{S} & =\lambda x \cdot \lambda s \cdot \lambda z \cdot s(x s z)
\end{aligned}
$$

iszero $=\lambda n . n(\lambda y$. false $)$ true
$S^{\prime}=\lambda x \cdot \lambda s z \cdot x s(s z)$

arithmetic

addition:
plus $:=\lambda m n . \lambda s z . m s(n s z)$
multiplication:
$\mathrm{mul}:=\lambda m n . \lambda s z \cdot m(n s) z$
exponentiation:
$\exp :=\lambda m n . n m$

definability

assume a natural number n is encoded in the λ-calculus by $[n]$
a function $f: \mathbb{N} \rightarrow \mathbb{N}$ is definable in the λ-calculus by a term F if
$F[n]={ }_{\beta}[f(n)]$ for every $n \in \mathbb{N}$
if we restrict attention to Church Numerals:
$F c_{n}={ }_{\beta} c_{f(n)}$
we have seen some definable functions, we even have:
$f: \mathbb{N} \rightarrow \mathbb{N}$ is computable iff f is λ-definable

pair: idea

we try to find:
a method to combine two terms in a pair
in such a way that a component can be extracted from the pair

pairs: definition

definition of pairing operator:

$$
\pi:=\lambda / r z . z \mid r
$$

then:

$$
\pi P Q={ }_{\beta} \lambda z . z P Q
$$

projections::

$$
\begin{aligned}
& \pi_{1}:=\lambda u . u(\lambda / r . I)=\lambda u . u \text { true } \\
& \pi_{2}:=\lambda u . u(\lambda / r . r)=\lambda u . u \text { false }
\end{aligned}
$$

then:

$$
\begin{aligned}
& \pi_{1}(\pi P Q)={ }_{\beta} P \\
& \pi_{2}(\pi P Q)={ }_{\beta} Q
\end{aligned}
$$

predecessor

auxiliary definition:

$$
\text { prefn }:=\lambda f p . \pi \text { false }\left(\text { ite }\left(\pi_{1} p\right)\left(\pi_{2} p\right)\left(f\left(\pi_{2} p\right)\right)\right)
$$

then:

$$
\begin{aligned}
& \operatorname{prefn} f(\pi \text { true } x)={ }_{\beta} \pi \text { false } x \\
& \operatorname{prefn} f(\pi \text { false } x)={ }_{\beta} \pi \text { false }(f x)
\end{aligned}
$$

definition predecessor:

$$
\text { pred }:=\lambda x \cdot \lambda s z \cdot \pi_{2}(x(\text { prefn } s)(\pi \operatorname{true} z))
$$

lists: idea

a list is obtained by repeatedly forming a pair for example: $[1,2,3]$ is $(1,(2,(3, n i l)))$

lists: definition

constructors:

$$
\begin{aligned}
& \text { nil }:=\lambda x y . y \\
& \text { cons }:=\lambda h t . \lambda z . z h t=\pi
\end{aligned}
$$

definition:

$$
\begin{aligned}
& \text { head }:=\lambda / . I(\lambda h t . h)=\pi_{1} \\
& \text { tail }:=\lambda I . I(\lambda h t . t)=\pi_{2}
\end{aligned}
$$

then:
head $($ cons $H T)={ }_{\beta} H$
tail $(\operatorname{cons} H T)={ }_{\beta} T$

empty

how do we define a predicate empty on lists?
cons $H T={ }_{\beta} \lambda z . z H T$
nil $:=\lambda x y \cdot y$
isempty $:=\lambda I . I(\lambda x . \lambda y . \lambda z$ false $)$ true
alternative:
nil $=\lambda z$. true
isempty $=\lambda / . I(\lambda x . \lambda y . \lambda z$. false $)$

recursive functions: examples in Haskell

```
factorial n = if (n==0)
    then 1
    else (n * factorial (n-1))
```

```
som [] \(=0\)
som (h:t) \(=\mathrm{h}+(\) som t\()\)
```

length [] = 0
length $(h: t)=(l e n g t h ~ t)+1$

how do we define length in lambda-calculus?

first idea:
length $=\lambda /$. if $/$ is empty then zero, else length of tail of $/$ plus 1
lists represented as nil $:=\lambda x y . y$ and cons $:=\lambda h t . \lambda z . z h t$
conditional represented as ite $=\lambda b . \lambda x \cdot \lambda y . b x y$
check on empty represented as isempty $:=\lambda / . I(\lambda x y z$. false $)$ true
Church numerals with 0 represented as $c_{0}=\lambda s . \lambda z . z$
tail represented as tail $=\lambda I . I(\lambda h . \lambda t . t)$
plus one represented as $S=\lambda x . \lambda s z . s(x s z)$

use fixed point combinator

So far we have:

$$
\text { length }:=\lambda / \text {. ite }(\text { isempty } I) c_{0}(S(\text { length }(\text { tail } /)))
$$

which still contains length. Now using

$$
M:=\lambda a . \lambda / . \text { ite }(\text { isempty } /) c_{0}(S(a(\text { tail } /)))
$$

we have

$$
\text { length }={ }_{\beta} M \text { length }
$$

So we actually look for a fixed point of M ! So we take:

$$
\text { length }:=\text { Y M }
$$

with M defined as above, and Y Curry's fixed point combinator

recursive functions: method

we try to define:
G with $G=\ldots G \ldots$
hence we look for:
G with $G=(\lambda g \ldots g \ldots) G$
hence we take:
a fixed point of $\lambda g . \ldots g \ldots$
that is, using a fixed point combinator Y we define:

$$
G=\mathrm{Y}(\lambda g \ldots g \ldots)
$$

from Haskell to lambda

Haskell is translated to core Haskell which can be seen as $\lambda+$

```
length [] = 0
length (h:t) = (length t) + 1
```

becomes

```
length 1 = case 1 of
    [] -> 0
    (h:t) -> 1 + length t
```

becomes (...) becomes roughly
$\mathrm{Y}(\lambda a \cdot \lambda /$. if $(I==[])$ then 0 else $(\lambda(h: t) \cdot(1+(a t))) I)$

remark: lambda calculi with patterns

computation by reduction and pattern matching:
first projection:
$(\lambda\langle x, y\rangle \cdot x)\langle 3,5\rangle \rightarrow x[x, y:=3,5]=3$
length of a non-empty list:
$(\lambda(h: t) .1+($ length $t))(1:$ nil $) \rightarrow(1+($ length $t))[t:=$ nil $]=1+$ length nil

further reading

R linear numeral systems
Ian Mackie
JAR 2018

overview

- definability
- confluence
- simply typed lambda calculus
- strategies

confluence: definition

every two coinitial rewrite sequences can be joined

confluence yields uniqueness of normal forms and consistency

how to prove confluence?

using Newman's Lemma:
SN and weak confluence \Rightarrow confluence
but λ-calculus is not SN ; see Ω
using a method due to Tait and Martin-Löf:
show the diamond property for a relation \longmapsto with $\rightarrow_{\beta} \subseteq \longmapsto \subseteq \rightarrow_{\beta}^{*}$
what can we use for \longmapsto ?

parallel beta-reduction

definition:

$x \Rightarrow_{\beta} x$
if $M \Rightarrow_{\beta} M^{\prime}$ then $\lambda x \cdot M \Rightarrow_{\beta} \lambda x \cdot M^{\prime}$
if $M \Rightarrow_{\beta} M^{\prime}$ and $N \Rightarrow_{\beta} N^{\prime}$ then $M N \Rightarrow_{\beta} M^{\prime} N^{\prime}$
$(\lambda x . M) N \Rightarrow_{\beta} M[x:=N]$
example: $(\mathrm{II})(\mathrm{II}) \Rightarrow_{\beta} \mathrm{II}$
parallel reduction is a congruence
it is not the compatible closure of a reduction rule

parallel β-reduction does not have the diamond property

we have the divergence
$(\lambda x \cdot(\lambda y \cdot x) \mathrm{I})(\mathrm{II}) \Rightarrow_{\beta}(\lambda y . \mathrm{II}) \mathrm{I}$
and
$(\lambda x \cdot(\lambda y \cdot x) \mathrm{I})(\mathrm{II}) \Rightarrow_{\beta}(\lambda x \cdot x) \mathrm{I}$
the intended common reduct I cannot be reached with \Rightarrow from $(\lambda y . \mathrm{II})$ I the residual of II is nested in the residual of $(\lambda y . x) \mathrm{I}$
simlarly, parallel reduction for HRSs does not have the diamond property

multi-step beta-reduction

instead of parallel reduction we use multi-step reduction which corresponds to a complete development
$x \mapsto x$
if $M \leftrightarrow M^{\prime}$ then $\lambda x . M \leftrightarrow \lambda x \cdot M^{\prime}$
if $M \leftrightarrow M^{\prime}$ and $N \leftrightarrow N^{\prime}$ then $M N \not M^{\prime} N^{\prime}$
if $M \leftrightarrow M^{\prime}$ and $N \leftrightarrow N^{\prime}$ then $(\lambda x . M) N \leftrightarrow M^{\prime}\left[x:=N^{\prime}\right]$

examples

$$
\frac{|I \leftrightarrow| \quad|\mapsto|}{(\lambda y \cdot I I) I \Leftrightarrow I}
$$

$$
\frac{x(\mathrm{I} a) \leftrightarrow x a \quad \mathrm{II} \rightarrow \mathrm{I}}{(\lambda x \cdot x(\mathrm{I} a))(\mathrm{II}) \leftrightarrow \mathrm{I} a}
$$

$$
\frac{\|\||\quad| a \leftrightarrow a}{(I I)(I a) \leftrightarrow I a}
$$

limitations of multi-step reduction

we have $(\lambda x . \lambda y . x y) a b \rightarrow_{\beta}(\lambda y . a y) b \rightarrow_{\beta} a b$ but not $(\lambda x, \lambda y, x y) a b \rightarrow a b$
we have $\mathrm{I}(\lambda x . x) a \rightarrow_{\beta}(\lambda x . x) a \rightarrow_{\beta} a$
but not I $(\lambda x, x) a \leftrightarrow a$
we have $(\lambda x \cdot x a)(\lambda y \cdot x) \rightarrow_{\beta}(\lambda y \cdot y) a \rightarrow_{\beta} a$ but not $(\lambda x, x a)(\lambda y . y) \leftrightarrow a$
multi-step reduction corresponds to complete developments where only residuals of initially present redexes are contracted (Jean-Jacques Lévy, 1974)

uniform common reduct (Takahashi)

corresponds to complete development of the set of all redexes
$x^{*}=x$
$\lambda x \cdot P^{*}=\lambda x \cdot P^{*}$
$P Q^{*}=P^{*} Q^{*}$ if $P Q$ not a redex
$(\lambda x . P) Q^{*}=P^{*}\left[x:=Q^{*}\right]$
for example:
$(\lambda x \cdot x(\mathrm{la}))(\mathrm{I} b)^{*}=b a$
$(\lambda x \cdot(\lambda y \cdot x) \mathrm{I})(\mathrm{II})^{*}=\mathrm{I}$

confluence and hence consistency

\rightarrow has the triangle property: if $M \leftrightarrow N$ then $N \leftrightarrow M^{*}$
hence it has the diamond property
hence \rightarrow_{β} is confluent
hence we have consistency:
$\lambda x y . x \neq{ }_{\beta} \lambda x y . y$

adding eta yields critical pairs

$$
\begin{gathered}
M N_{\eta}^{\leftarrow}(\lambda x \cdot M x) N \rightarrow_{\beta} M N \\
\lambda x . M_{\beta} \leftarrow \lambda x .(\lambda u \cdot M) x \rightarrow_{\eta} \lambda u . M
\end{gathered}
$$

the critical pairs are trivial, so beta-eta is weakly orthogoanal we can adapt the proof!

Z-property:
if there is a map $*$ such that if $a \rightarrow b$ then $b \rightarrow^{*} a^{*}$ and $a^{*} \rightarrow b^{*}$
if \rightarrow has the Z-property then \rightarrow is confluent
we can use the uniform common reduct by Takahashi
(van Oostrom, Dehornoy)

further reading

Parallel Reductions in λ-calculus
Masako Takahashi
IC 118(1), pp. 120-127, 1995
國 More Church-Rosser proofs
Tobias Nipkow
JAR 26(1), pp. 51-66, 2001
A A short machanized proof of the Church-Rosser Theorem by the Z-property for the $\lambda \beta$-calculus in Nomina Isabelle Julian Nagele, Vincent van Oostrom, Christian Sternagel
5th IWC, pp. 55-59, 2016

further reading

击 Higher-order rewrite systems and their confluence
Richard Mayr and Tobias Nipkow
TCS 192, -. 3-29, 1998
Developing developments
Vincent van Oostrom
TCS 175, pp. 159-181, 1997
R Modularity of Confluence - Constructed
Vincent van Oostrom
Proc. 4th IJCAR, LNAI 5195, pp. 348 - 363, 2008
Higher-Order (Non-)Modularity
Claus Appel, Vincent van Oostrom, Jakob Grue Simonsen
Proc. 21th RTA, LIPIcs 284, pp. 17 - 32, 2010
R CoCo 2015 participant: CSI-ho 0.1
Julian Nagele
Proceedings of IWC 2015, p. 41

overview

- definability
- confluence
- simply typed lambda calculus
- strategies

simple types: definition

we assume a base type o

- a base type is a simple type
- if A and B are simple types then $A \rightarrow B$ is a simple type
\rightarrow is assumed to be right-associative
outermost parentheses are omitted
every simple type is of the form $A_{1} \rightarrow \ldots \rightarrow A_{n} \rightarrow 0$

simply typed lambda-terms: defintion

we assume a priori typed variables x, y, z, \ldots

- $x: A$ is a simply typed λ-term of type A
- $\lambda x . M: B \rightarrow C$ is a simply typed λ-term of type $B \rightarrow C$ if $M: C$ and $x: B$
- $M N: A$ is a simply typed λ-term of type A
if $M: B \rightarrow A$ and $N: B$

examples

$\lambda x . x: A \rightarrow A$ if $x: A$
$\lambda x . \lambda y \cdot x: A \rightarrow B \rightarrow A$ if $x: A$ and $y: B$
$\lambda s . \lambda z . s z:(A \rightarrow A) \rightarrow A \rightarrow A$ if $s: A \rightarrow A$ and $z: A$
$\Omega=(\lambda x . x x)(\lambda x . x x)$ is not typable
$\mathrm{Y}=\lambda f .(\lambda x \cdot f(x x))(\lambda x \cdot f(x x))$ is not typable
$\mathrm{T}=(\lambda x \cdot \lambda y \cdot y(x x y))(\lambda x \cdot \lambda y \cdot y(x x y))$ is not typable

termination of beta-reduction

unlike untyped λ-calculus,
simply typed λ-calculus is terminating
termination follows using the computability proof method proof method is crucial for HO-termination proofs method due to Tait and Girard

computability: definition

Definition

- M : o is computable if M is terminating
- $M: A \rightarrow B$ is computable if $M N: B$ is computable for every computable $N: A$

Example

- x : 0 is computable
- $(\lambda x \cdot x) y$: 0 is computable
- $x: A \rightarrow B$ computable?

first attempt of the termination proof

- step 1 A: computability implies termination (for type o this holds by definition) try induction on the definition of computability for $M: A \rightarrow B$ we need to take a computable term of type A do we have such a term?
- step 1B: show that variables are computable try induction on the definition of computability for $x: A \rightarrow B$ we need to show that $x P$ is computable
- prove 1A and 1 B simultaneously
- step 2: all simply typed terms are computable

Lemma (gives steps 1 A and 1 B)
1 if $M: C$ computable then $M: C$ terminating
[for all $n \geq 0$:
if $x P_{1} \ldots P_{n}: C$ terminating then $x P_{1} \ldots P_{n}: C$ computable simultaneous induction on the definition of types.

- for type o: both follow by definition of computabiity
- for type $A \rightarrow B$:

1: take $M: A \rightarrow B$ computable take x : A; it is computable by IH 2
by definition, $M x: B$ is computable, and hence by IH 1 terminating hence $M: A \rightarrow B$ is terminating
2: take $\times P_{1} \ldots P_{n}: A \rightarrow B$ terminating
take Q : A computable (exists by IH 2); it is terminating by IH 1 hence $x P_{1} P_{n} Q: B$ is terminating; it is computable by IH 2 so $\times P_{1} \ldots P_{n}: A \rightarrow B$ computable

all terms are computable: proof attempt

induction on the definition of terms
$1 M=x$
2 $M=P Q$
$3 M=\lambda x$. P here it does not work immediately we need to show: $(\lambda x . P) Q$ is computable for computable Q we will use:
$P[x:=Q]$ computable implies $(\lambda x . P) Q$ computable and strengthening of the current statement

all terms are computable (gives step 2)

Theorem
σ computable $\Rightarrow M^{\sigma}$ computable
Proof.
Induction on the definition of terms.
11 M $=x$
variables are computable and σ is computable

all terms are computable (gives step 2)

Theorem

σ computable $\Rightarrow M^{\sigma}$ computable
Proof.
Induction on the definition of terms.
11 M $=x$
$2 \mathrm{M}=\lambda \mathrm{x}$. P
$\sigma[x:=N]$ is a computable substitution for N computable by $\mathrm{IH} P^{\sigma[x:=N]}=P^{\sigma}[x:=N]$ is computable by (exercise) lemma below, $\left(\lambda x . P^{\sigma}\right) N$ is computable

Lemma

for all $n \geq 0$: if $M[x:=N] P_{1} \ldots P_{n}$ computable and N computable then $(\lambda x . M) N P_{1} \ldots P_{n}$ computable

all terms are computable (gives step 2)

Theorem

σ computable $\Rightarrow M^{\sigma}$ computable
Proof.
Induction on the definition of terms.
11 M $=x$
(1) $M=\lambda x . P$

3 $M=P Q$
by $\mathrm{IH} P^{\sigma}$ and Q^{σ} are computable by definition of computability, $P^{\sigma} Q^{\sigma}$ is computable

finally, the result

we have: computability implies termination
we have: M^{σ} computable for every M and for every computable σ
we have: identity substitution is computable

Corollary
simply typed λ-calculus with β-reduction is terminating

Curry-Howard-De Bruijn isomorphism

the formulas and proofs of first-order propositional logic
correspond to
the types and terms of simply typed λ-calculus
$\frac{\frac{\left[A^{x}\right]}{B \rightarrow A} I[y] \rightarrow}{A \rightarrow B \rightarrow A} I[x] \rightarrow \quad: \quad A \rightarrow B \rightarrow A$
$\lambda x: A \cdot \lambda y: B \cdot x \quad: \quad A \rightarrow B \rightarrow A$

overview

- definability
- confluence
- simply typed lambda calculus
- strategies

strategy: informally

there may be different ways to reduce a term
a strategy tells us how to reduce a term
a term may be weakly normalizing (WN) but not terminating (SN)
a normalizing strategy yields a reduction to normal form if possible
a perpetual strategy yields an infinite reduction if possible
in general: a strategy gives us a reduction with a desired property

reduction graph of a λ-term

terms are the vertices and the reduction steps are the edges
a reduction graph may be finite and cycle-free; example: Ix
a reduction graph may be finite with cycles; example: Ω
a reduction graph may be infinite; example: $(\lambda x \cdot x x x)(\lambda x \cdot x x x)$
a reduction graph is not necessarily simple; example: I (II)
a reduction graph may be nice to draw; example: $(\lambda x . \mid x x)(\lambda x . \mid x x)$

the leftmost-innermost reduction strategy

is not normalizing:
$(\lambda x . y) \Omega \rightarrow_{\beta}(\lambda x . y) \Omega \rightarrow_{\beta}(\lambda x . y) \Omega \rightarrow_{\beta} \ldots$
does not copy redexes (example):
$(\lambda x . f x x)(((\lambda x . x) a)) \rightarrow_{\beta}(\lambda x . f x x) a \rightarrow_{\beta} f a a$
may contract redexes that are not needed:
$(\lambda x . y)(I z) \rightarrow_{\beta}(\lambda x . y) z \rightarrow_{\beta} y$

innermost reduction

for first-order orthogonal TRSs, any innermost strategy is perpetual for λ-calculus this is not true:
the term $(\lambda x .(\lambda y . z)(x x))(\lambda x \cdot x x)$ is WIN:
$(\lambda x .(\lambda y \cdot z)(x x))(\lambda x \cdot x x) \rightarrow_{\beta}(\lambda x \cdot z)(\lambda x \cdot x x) \rightarrow_{\beta} z$ but not SN:
$(\lambda x .(\lambda y . z)(x x))(\lambda x . x x) \rightarrow_{\beta}(\lambda y . z) \Omega \rightarrow_{\beta}(\lambda y . z) \Omega \rightarrow_{\beta} \ldots$
so innermost reduction is not perpetual for λ-calculus
we do not have: strongly innermost normalizing implies strongly normalizing

the leftmost-outermost strategy

is normalizing for left-normal TRSs
λ-calculus is left-normal (but not a TRS)
lefmost-outermost strategy is normalizing
first proof by Curry 1958,
recent proofa by Hirokawa, Middeldorp, and Moser,
and by Toyama and Van Oostrom
example: $(\lambda x . y) \Omega \rightarrow_{\beta} y$

the rightmost-outermost strategy

is not normalizing:
$((\lambda x . \lambda y . x) \mathrm{I}) \Omega \rightarrow((\lambda x . \lambda y . x) \mathrm{I}) \Omega \rightarrow \ldots$
λ-calculus is not right-normal

further reading

Reftmost outermost revisited
Nao Hirokawa, Aart Middeldorp and Georg Moser
LIPIcs 36 (2015)
击 Normalisation by Random Descent
Vincent van Oostrom and Yoshihito Toyama
LIPIcs 52 (2016)

conclusion

for λ-calculus and for higher-order rewriting
we often need multi-step reduction instead of parallel reduction
for λ-calculus and for higher-order rewriting
we often need a variation of the computability proof method

more importantly

MANY THANKS TO THE ORGANIZERS
Adeline, Claire, Frédéric, Olivier !!

