
ISR 2019

2019 07 06

λ-calculus

lecture 2

Femke van Raamsdonk

http://www.few.vu.nl/~femke

overview

definability

confluence

simply typed lambda calculus

strategies

overview

definability
natural numbers
pairs
lists
recursive functions

confluence

simply typed lambda calculus

strategies

expressive power

the λ-calculus is Turing-complete

Church’s thesis: everything that is computable

is definable in the pure untyped lambda calculus

we illustrate the expressive power

by considering the encoding of several data-types

natural numbers as lambda terms

we try to find:

inifinitely many

different

closed

normal forms

permitting to calculate

Church numerals

numerals

c0 = λs. λz . z
c1 = λs. λz . s z
c2 = λs. λz . s (s z)
c3 = λs. λz . s (s (s z))
c4 = λs. λz . s (s (s (s z)))
...
cn = λs. λz . sn(z)

successor

S = λx . λsz . s (x s z)

indeed

S c0 = (λx . λs. λz . s (x s z)) c0 =β λsz . (λs
′. λz ′. z ′) s (s z) =β λsz . s z

define other operations

c0 = λs. λz . z
c1 = λs. λz . s z
c2 = λs. λz . s (s z)
c3 = λs. λz . s (s (s z))
c4 = λs. λz . s (s (s (s z)))

...
cn = λs. λz . sn(z)
S = λx . λs. λz . s (x s z)

iszero = λn. n (λy . false) true

S′ = λx . λsz . x s (s z)

arithmetic

addition:

plus := λmn. λsz .m s (n s z)

multiplication:

mul := λmn. λsz .m (n s) z

exponentiation:

exp := λmn. nm

definability

assume a natural number n is encoded in the λ-calculus by [n]

a function f : N→ N is definable in the λ-calculus by a term F if

F [n] =β [f (n)] for every n ∈ N

if we restrict attention to Church Numerals:

F cn =β cf (n)

we have seen some definable functions, we even have:

f : N→ N is computable iff f is λ-definable

pair: idea

we try to find:

a method to combine two terms in a pair

in such a way that a component can be extracted from the pair

pairs: definition
definition of pairing operator:

π := λlrz . z l r

then:

π P Q =β λz . z P Q

projections::

π1 := λu. u (λlr . l) = λu. u true

π2 := λu. u (λlr . r) = λu. u false

then:

π1 (π P Q) =β P

π2 (π P Q) =β Q

predecessor

auxiliary definition:

prefn := λfp. π false (ite (π1 p) (π2 p) (f (π2 p)))

then:

prefn f (π true x) =β π false x

prefn f (π false x) =β π false (f x)

definition predecessor:

pred := λx . λsz . π2 (x (prefn s) (π true z))

lists: idea

a list is obtained by repeatedly forming a pair

for example: [1, 2, 3] is (1, (2, (3, nil)))

lists: definition

constructors:

nil := λxy . y

cons := λht. λz . z h t = π

definition:

head := λl . l (λht. h) = π1

tail := λl . l (λht. t) = π2

then:

head (consH T) =β H

tail (consH T) =β T

empty

how do we define a predicate empty on lists?

consH T =β λz . z H T

nil := λxy . y

isempty := λl . l (λx .λy .λz . false) true

alternative:

nil = λz . true

isempty = λl . l (λx . λy . λz . false)

recursive functions: examples in Haskell

factorial n = if (n==0)

then 1

else (n * factorial (n-1))

som [] = 0

som (h:t) = h + (som t)

length [] = 0

length (h:t) = (length t) + 1

how do we define length in lambda-calculus?

first idea:

length = λl . if l is empty then zero, else length of tail of l plus 1

lists represented as nil := λxy . y and cons := λht. λz . z h t

conditional represented as ite = λb. λx .λy . b x y

check on empty represented as isempty := λl . l (λxyz . false) true

Church numerals with 0 represented as c0 = λs. λz . z

tail represented as tail = λl . l (λh. λt. t)

plus one represented as S = λx . λsz . s (x s z)

use fixed point combinator

So far we have:

length := λl . ite (isempty l) c0 (S (length (tail l)))

which still contains length. Now using

M := λa. λl . ite (isempty l) c0 (S (a (tail l)))

we have
length =β M length

So we actually look for a fixed point of M! So we take:

length := Y M

with M defined as above, and Y Curry’s fixed point combinator

recursive functions: method

we try to define:

G with G = . . .G . . .

hence we look for:

G with G = (λg g . . .)G

hence we take:

a fixed point of λg g . . .

that is, using a fixed point combinator Y we define:

G = Y (λg g . . .)

from Haskell to lambda

Haskell is translated to core Haskell which can be seen as λ+

length [] = 0

length (h:t) = (length t) + 1

becomes

length l = case l of

[] -> 0

(h:t) -> 1 + length t

becomes (...) becomes roughly

Y (λa. λl . if (l == []) then 0 else (λ(h : t). (1 + (a t))) l)

remark: lambda calculi with patterns

computation by reduction and pattern matching:

first projection:
(λ〈x , y〉. x) 〈3, 5〉 → x [x , y := 3, 5] = 3

length of a non-empty list:
(λ(h : t). 1 + (length t)) (1 : nil)→ (1 + (length t))[t := nil] = 1 + length nil

further reading

linear numeral systems

Ian Mackie

JAR 2018

https://doi.org/10.1007/s1081

overview

definability

confluence

simply typed lambda calculus

strategies

confluence: definition

every two coinitial rewrite sequences can be joined

CR

confluence yields uniqueness of normal forms and consistency

how to prove confluence?

using Newman’s Lemma:

SN and weak confluence ⇒ confluence

but λ-calculus is not SN; see Ω

using a method due to Tait and Martin-Löf:

show the diamond property for a relation 7−→ with →β ⊆7−→⊆→∗β

what can we use for 7−→?

parallel beta-reduction

definition:

x ⇒β x

if M ⇒β M ′ then λx .M ⇒β λx .M
′

if M ⇒β M ′ and N ⇒β N ′ then M N ⇒β M ′N ′

(λx .M)N ⇒β M[x := N]

example: (I I) (I I)⇒β I I

parallel reduction is a congruence

it is not the compatible closure of a reduction rule

parallel β-reduction does not have the diamond property

we have the divergence

(λx . (λy . x) I) (I I)⇒β (λy . I I) I

and

(λx . (λy . x) I) (I I)⇒β (λx . x) I

the intended common reduct I cannot be reached with ⇒ from (λy . I I) I

the residual of I I is nested in the residual of (λy . x) I

simlarly, parallel reduction for HRSs does not have the diamond property

multi-step beta-reduction

instead of parallel reduction we use multi-step reduction

which corresponds to a complete development

x ◦→ x

if M ◦→ M ′ then λx .M ◦→ λx .M ′

if M ◦→ M ′ and N ◦→ N ′ then M N ◦→ M ′N ′

if M ◦→ M ′ and N ◦→ N ′ then (λx .M)N ◦→ M ′[x := N ′]

examples

I I ◦→ I I ◦→ I
(λy . I I) I ◦→ I

x (I a) ◦→ x a I I ◦→ I

(λx . x (I a)) (I I) ◦→ I a

I I ◦→ I I a ◦→ a
(I I) (I a) ◦→ I a

limitations of multi-step reduction

we have (λx . λy . x y) a b →β (λy . a y) b →β a b
but not (λx . λy . x y) a b ◦→ a b

we have I (λx . x) a→β (λx . x) a→β a
but not I (λx . x) a ◦→ a

we have (λx . x a) (λy . x)→β (λy . y) a→β a
but not (λx . x a) (λy . y) ◦→ a

multi-step reduction corresponds to complete developments
where only residuals of initially present redexes are contracted

(Jean-Jacques Lévy, 1974)

uniform common reduct (Takahashi)

corresponds to complete development of the set of all redexes

x∗ = x

λx .P∗ = λx .P∗

P Q∗ = P∗Q∗ if P Q not a redex

(λx .P)Q∗ = P∗[x := Q∗]

for example:

(λx . x (Ia)) (I b)∗ = b a

(λx . (λy . x) I) (I I)∗ = I

confluence and hence consistency

◦→ has the triangle property: if M ◦→ N then N ◦→ M∗

hence it has the diamond property

hence →β is confluent

hence we have consistency:

λxy . x 6=β λxy . y

adding eta yields critical pairs

M N η← (λx .M x)N →β M N

λx .M β← λx . (λu.M) x →η λu.M

the critical pairs are trivial, so beta-eta is weakly orthogoanal
we can adapt the proof !

Z

Z -property:

if there is a map ∗ such that if a→ b then b →∗ a∗ and a∗ → b∗

if → has the Z -property then → is confluent

we can use the uniform common reduct by Takahashi

(van Oostrom, Dehornoy)

further reading

Parallel Reductions in λ-calculus

Masako Takahashi

IC 118(1), pp. 120-127, 1995

More Church-Rosser proofs

Tobias Nipkow

JAR 26(1), pp. 51-66, 2001

A short machanized proof of the Church-Rosser Theorem by the Z-property for the
λβ-calculus in Nomina Isabelle

Julian Nagele, Vincent van Oostrom, Christian Sternagel

5th IWC, pp. 55–59, 2016

https://doi.org/10.1006/inco.1995.1057
https://doi.org/10.1023/A:1006496715975
https://arxiv.org/abs/1609.03139
https://arxiv.org/abs/1609.03139

further reading

Higher-order rewrite systems and their confluence

Richard Mayr and Tobias Nipkow

TCS 192, –. 3–29, 1998

Developing developments

Vincent van Oostrom

TCS 175, pp. 159–181, 1997

Modularity of Confluence – Constructed

Vincent van Oostrom

Proc. 4th IJCAR, LNAI 5195, pp. 348 – 363, 2008

Higher-Order (Non-)Modularity

Claus Appel, Vincent van Oostrom, Jakob Grue Simonsen

Proc. 21th RTA, LIPIcs 284, pp. 17 – 32, 2010

CoCo 2015 participant: CSI-ho 0.1

Julian Nagele

Proceedings of IWC 2015, p. 41

http://dx.doi.org/10.1016/S0304-3975(97)00143-6
http://dx.doi.org/10.1016/S0304-3975(96)00173-9
http://dx.doi.org/10.1007/978-3-540-71070-7_31
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.17
http://www.csl.sri.com/users/tiwari/iwc2015/

overview

definability

confluence

simply typed lambda calculus

strategies

simple types: definition

we assume a base type o

• a base type is a simple type

• if A and B are simple types then A→ B is a simple type

→ is assumed to be right-associative

outermost parentheses are omitted

every simple type is of the form A1 → . . .→ An → o

simply typed lambda-terms: defintion

we assume a priori typed variables x , y , z , . . .

• x : A is a simply typed λ-term of type A

• λx .M : B → C is a simply typed λ-term of type B → C

if M : C and x : B

• M N : A is a simply typed λ-term of type A

if M : B → A and N : B

examples

λx . x : A→ A if x : A

λx . λy .x : A→ B → A if x : A and y : B

λs. λz .s z : (A→ A)→ A→ A if s : A→ A and z : A

Ω = (λx . x x) (λx . x x) is not typable

Y = λf . (λx . f (x x)) (λx . f (x x)) is not typable

T = (λx . λy . y (x x y)) (λx . λy . y (x x y)) is not typable

termination of beta-reduction

unlike untyped λ-calculus,

simply typed λ-calculus is terminating

termination follows using the computability proof method

proof method is crucial for HO-termination proofs

method due to Tait and Girard

http://iml.univ-mrs.fr/~girard/

computability: definition

Definition

• M : o is computable
if M is terminating

• M : A→ B is computable
if M N : B is computable for every computable N : A

Example

• x : o is computable

• (λx . x) y : o is computable

• x : A→ B computable?

first attempt of the termination proof

• step 1 A: computability implies termination
(for type o this holds by definition)
try induction on the definition of computability
for M : A→ B we need to take a computable term of type A
do we have such a term?

• step 1B: show that variables are computable
try induction on the definition of computability
for x : A→ B we need to show that x P is computable

• prove 1A and 1B simultaneously

• step 2: all simply typed terms are computable

Lemma (gives steps 1A and 1B)

1 if M : C computable then M : C terminating

2 for all n ≥ 0:
if x P1 . . .Pn : C terminating then x P1 . . .Pn : C computable

simultaneous induction on the definition of types.

• for type o: both follow by definition of computabiity

• for type A→ B:
1: take M : A→ B computable
take x : A; it is computable by IH2
by definition, M x : B is computable, and hence by IH1 terminating
hence M : A→ B is terminating

2: take x P1 . . . Pn : A→ B terminating
take Q : A computable (exists by IH2); it is terminating by IH1
hence x P1 Pn Q : B is terminating; it is computable by IH2
so x P1 . . .Pn : A→ B computable

all terms are computable: proof attempt

induction on the definition of terms

1 M = x

2 M = P Q

3 M = λx .P here it does not work immediately
we need to show: (λx .P)Q is computable for computable Q
we will use:
P[x := Q] computable implies (λx .P)Q computable
and strengthening of the current statement

all terms are computable (gives step 2)

Theorem

σ computable ⇒ Mσ computable

Proof.
Induction on the definition of terms.

1 M = x
variables are computable and σ is computable

all terms are computable (gives step 2)

Theorem

σ computable ⇒ Mσ computable

Proof.
Induction on the definition of terms.

1 M = x

2 M = λx .P
σ[x := N] is a computable substitution for N computable
by IH Pσ[x :=N] = Pσ[x := N] is computable
by (exercise) lemma below, (λx .Pσ)N is computable

Lemma

for all n ≥ 0: if M[x := N]P1 . . .Pn computable and N computable

then (λx .M)N P1 . . . Pn computable

all terms are computable (gives step 2)

Theorem

σ computable ⇒ Mσ computable

Proof.
Induction on the definition of terms.

1 M = x

2 M = λx .P

3 M = P Q
by IH Pσ and Qσ are computable
by definition of computability, Pσ Qσ is computable

finally, the result

we have: computability implies termination

we have: Mσ computable for every M and for every computable σ

we have: identity substitution is computable

Corollary

simply typed λ-calculus with β-reduction is terminating

Curry-Howard-De Bruijn isomorphism

the formulas and proofs of first-order propositional logic

correspond to

the types and terms of simply typed λ-calculus

[Ax]

B → A
I [y]→

A→ B → A
I [x]→

: A→ B → A

∼

λx : A. λy : B. x : A→ B → A

overview

definability

confluence

simply typed lambda calculus

strategies

strategy: informally

there may be different ways to reduce a term

a strategy tells us how to reduce a term

a term may be weakly normalizing (WN) but not terminating (SN)

a normalizing strategy yields a reduction to normal form if possible

a perpetual strategy yields an infinite reduction if possible

in general: a strategy gives us a reduction with a desired property

reduction graph of a λ-term

terms are the vertices and the reduction steps are the edges

a reduction graph may be finite and cycle-free; example: I x

a reduction graph may be finite with cycles; example: Ω

a reduction graph may be infinite; example: (λx . x x x) (λx . x x x)

a reduction graph is not necessarily simple; example: I (I I)

a reduction graph may be nice to draw; example: (λx . I x x) (λx . I x x)

the leftmost-innermost reduction strategy

is not normalizing:

(λx . y) Ω→β (λx . y) Ω→β (λx . y) Ω→β . . .

does not copy redexes (example):

(λx . f x x) (((λx . x) a))→β (λx . f x x) a→β f a a

may contract redexes that are not needed:

(λx . y) (I z)→β (λx . y) z →β y

innermost reduction

for first-order orthogonal TRSs, any innermost strategy is perpetual

for λ-calculus this is not true:

the term (λx . (λy . z) (x x)) (λx . x x) is WIN:

(λx . (λy . z) (x x)) (λx . x x)→β (λx . z) (λx . x x)→β z

but not SN:

(λx . (λy . z) (x x)) (λx . x x)→β (λy . z) Ω→β (λy . z) Ω→β . . .

so innermost reduction is not perpetual for λ-calculus

we do not have: strongly innermost normalizing implies strongly normalizing

the leftmost-outermost strategy

is normalizing for left-normal TRSs

λ-calculus is left-normal (but not a TRS)

lefmost-outermost strategy is normalizing

first proof by Curry 1958,

recent proofa by Hirokawa, Middeldorp, and Moser,

and by Toyama and Van Oostrom

example: (λx . y) Ω→β y

the rightmost-outermost strategy

is not normalizing:

((λx . λy . x) I) Ω→ ((λx . λy . x) I) Ω→ . . .

λ-calculus is not right-normal

further reading

Leftmost outermost revisited

Nao Hirokawa, Aart Middeldorp and Georg Moser

LIPIcs 36 (2015)

Normalisation by Random Descent

Vincent van Oostrom and Yoshihito Toyama

LIPIcs 52 (2016)

https://10.4230/LIPIcs.RTA.2015.209
https://10.4230/LIPIcs.FSCD.2016.32

conclusion

for λ-calculus and for higher-order rewriting

we often need multi-step reduction instead of parallel reduction

for λ-calculus and for higher-order rewriting

we often need a variation of the computability proof method

more importantly

many thanks to the organizers

Adeline, Claire, Frédéric, Olivier !!

	lecture 2
	definability
	natural numbers
	pairs
	lists
	recursive functions

	confluence
	simply typed lambda calculus
	strategies

