ISR 2019
2019 07 06
A-calculus

lecture 2

Femke van Raamsdonk

http://www.few.vu.nl/~femke

overview

definability
confluence
simply typed lambda calculus

strategies

overview

o definability
e natural numbers
e pairs
o lists
recursive functions

expressive power

the A-calculus is Turing-complete

Church’s thesis: everything that is computable

is definable in the pure untyped lambda calculus

we illustrate the expressive power

by considering the encoding of several data-types

natural numbers as lambda terms

we try to find:
inifinitely many
different

closed

normal forms

permitting to calculate

Church numerals
numerals

Co = AS.A\z.z

1 =As.\z.sz

¢ =As.\z.5(s2)

3 =MAs.\z.5(s(52))

c = Xs. Az.5(s(s(s2)))

Ch =)\S)\Z. Sn(z)
successor

S =Ax.\Asz.s5(xs2)
indeed

Sco = (Ax.As.Az.s(x52)) g = Asz. (A A\Z'.2') s (sz) =3 Asz.sz

define other operations

Co
a1
&}
(&
Ca

Cn

iszero = An. n(Ay.false) true

S"= Ax.Asz.xs(sz)

AS. Az.
AS. \z.

AS. A

N

AS. Az.

AS. Az.

AX. AS

sz

.s(sz)
.s(s(s2))
s(s(s(s2)))

s"(2)
.Az.s(xs2z)

arithmetic

addition:

plus := Amn. A\sz.ms(ns z)

multiplication:

mul := Amn. Asz.m(ns) z

exponentiation:

exp := Amn.nm

definability

assume a natural number n is encoded in the A-calculus by [n]

a function f : N — N is definable in the A-calculus by a term F if

F [n] =3 [f(n)] for every n € N

if we restrict attention to Church Numerals:
F Cn =B Cf(,,)

we have seen some definable functions, we even have:

f: N — N is computable iff f is A\-definable

pair: idea

we try to find:
a method to combine two terms in a pair

in such a way that a component can be extracted from the pair

pairs: definition

definition of pairing operator:
mi=ANrz.zlr
then:
TPQRQ=5Xz.2PQ
projections::
m1 = Au.u(AMr.l) = Au. utrue
7o i = Au. u(Alr.r) = Au. ufalse
then:
m(mP Q)= P

m (TP Q) =5 Q

predecessor

auxiliary definition:

prefn := \fp. m false (ite (w1 p) (2 p) (f (72 p)))

then:
prefn f (7 true x) =3 7 false x

prefn f (7 false x) =g false (f x)

definition predecessor:

pred := Ax. Asz. mp (x (prefn s) (7 true z))

lists: idea

a list is obtained by repeatedly forming a pair

for example: [1,2,3] is (1, (2, (3, nil)))

lists: definition

constructors:

nil ;= Axy.y

cons:=Aht. \z.zht=m
definition:

head := Al. [(Aht. h) = m

tail := AL [(A\ht. t) = m
then:

head (consH T) =5 H

tail(consHT) =3 T

empty

how do we define a predicate empty on lists?
consHT =g \z.zHT

nil := Axy.y

isempty := Al [(Ax.\y.\z. false) true
alternative:

nil = Az. true

isempty = Al. [(Ax. \y. Az. false)

recursive functions: examples in Haskell

factorial n = if (n==0)
then 1
else (n * factorial (n-1))

som [] =0
som (h:t)

h + (som t)

length [1 =0
length (h:t) = (length t) + 1

how do we define length in lambda-calculus?

first idea:

length = A/.if | is empty then zero, else length of tail of / plus 1
lists represented as nil := Axy.y and cons := M\ht. A\z.z ht
conditional represented as ite = Ab. Ax.A\y.bxy

check on empty represented as isempty := A/l. | (Axyz. false) true

Church numerals with 0 represented as cg = As. \z. z
tail represented as tail = Al. [(Ah. At. t)

plus one represented as S = Ax. Asz.s(x s z)

use fixed point combinator

So far we have:

length := Al.ite (isempty /) co (S (length (tail /)))
which still contains length. Now using

M := Xa. Al.ite (isempty /) co (S (a (tail 1))

we have
length =3 M length

So we actually look for a fixed point of M! So we take:
length :=Y M

with M defined as above, and Y Curry's fixed point combinator

recursive functions: method

we try to define:

GwithG=...G...

hence we look for:

GwithG=(N\g....g...)G

hence we take:

a fixed pointof A\g. ... g...

that is, using a fixed point combinator Y we define:

G=Y(\g....g...)

from Haskell to lambda

Haskell is translated to core Haskell which can be seen as A+

length [1 =0
length (h:t) = (length t) + 1

becomes
length 1 = case 1 of
b ->0
(h:t) -> 1 + length t

becomes (...) becomes roughly

Y (Aa. AlLif (I ==[]) thenOelse (A(h : t). (14 (at))) /)

remark: lambda calculi with patterns

computation by reduction and pattern matching:
first projection:
(Ax,y).x)(3,5) = x[x,y :==3,5] =3

length of a non-empty list:
(A(h:t).1+ (length t)) (1 : nil) = (1 + (length t))[t := nil] = 1 + length nil

further reading

ﬁ linear numeral systems
lan Mackie
JAR 2018

https://doi.org/10.1007/s1081

overview

@ confluence

confluence: definition

every two coinitial rewrite sequences can be joined

<

dp K

confluence yields uniqueness of normal forms and consistency

how to prove confluence?

using Newman's Lemma:
SN and weak confluence = confluence

but A-calculus is not SN; see Q

using a method due to Tait and Martin-Lof:
show the diamond property for a relation —— with —g C——C —>E

what can we use for —7

parallel beta-reduction

definition:

X =g X

if M =3 M’ then Ax. M =3 Ax. M’

if M =3 M" and N =3 N’ then MN =5 M' N’

(Ax. M) N =5 M[x := N]
example: (I1) (1) =4 11

parallel reduction is a congruence

it is not the compatible closure of a reduction rule

parallel 3-reduction does not have the diamond property

we have the divergence
(M. (Ay.x)) (1) =5 (Ay. 1)1
and

(Ax.(Ay.x)) (1) =5 (Ax. x) |

the intended common reduct | cannot be reached with = from (Ay.11) I
the residual of |1 is nested in the residual of (Ay.x)lI

simlarly, parallel reduction for HRSs does not have the diamond property

multi-step beta-reduction

instead of parallel reduction we use multi-step reduction

which corresponds to a complete development

X o X
if M > M’ then Ax. M = \x. M’
if M = M’ and N > N’ then M N = M' N’

if M > M’ and N - N then (Ax. M) N > M'[x := N']

examples

I | - |
(Ay. 1)1 =1
x(la) = xa 11

Ox.x(12)) (1) = 12

I | la - a
(IN(/a) = 1la

limitations of multi-step reduction

we have (Ax. Ay.xy)ab —g (Ay.ay)b—5ab
but not (Ax.Ay.xy)ab <> ab

we have | (Ax.x)a =g (Ax.x)a —g a
but not 1 (Ax.x)a <> a

we have (Ax.xa)(Ay.x) =5 (A\y.y)a—pa
but not (Ax.xa)(\y.y) = a

multi-step reduction corresponds to complete developments
where only residuals of initially present redexes are contracted

(Jean-Jacques Lévy, 1974)

uniform common reduct (Takahashi)

corresponds to complete development of the set of all redexes

x* = x
Ax. P* = \x. P*
PQ* = P*Q*if PQ not a redex

(Ax. P) Q" = P*[x := Q]

for example:
(Mx.x(1a))(1b)" = ba

M. (Ay.x)D) (N =1

confluence and hence consistency

- has the triangle property: if M <> N then N - M*
hence it has the diamond property
hence — 3 is confluent

hence we have consistency:

AXY. X #3 AXy.y

adding eta yields critical pairs

MN 4 (Ax. Mx) N =5 M N
Ax. M g— Ax. (Au. M) x =, Au. M

the critical pairs are trivial, so beta-eta is weakly orthogoanal
we can adapt the proof !

Z-property:

if there is a map * such that if a — b then b —* a* and a* — b*

if — has the Z-property then — is confluent
we can use the uniform common reduct by Takahashi

(van Oostrom, Dehornoy)

further reading

@ Parallel Reductions in A-calculus
Masako Takahashi
IC 118(1), pp. 120-127, 1995

@ More Church-Rosser proofs
Tobias Nipkow
JAR 26(1), pp. 51-66, 2001

@ A short machanized proof of the Church-Rosser Theorem by the Z-property for the
ApB-calculus in Nomina Isabelle
Julian Nagele, Vincent van Oostrom, Christian Sternagel
5th IWC, pp. 55-59, 2016

https://doi.org/10.1006/inco.1995.1057
https://doi.org/10.1023/A:1006496715975
https://arxiv.org/abs/1609.03139
https://arxiv.org/abs/1609.03139

further reading

@ Higher-order rewrite systems and their confluence
Richard Mayr and Tobias Nipkow
TCS 192, —-. 3-29, 1998

@ Developing developments
Vincent van Oostrom
TCS 175, pp. 159-181, 1997

@ Modularity of Confluence — Constructed
Vincent van Oostrom
Proc. 4th [JCAR, LNAI 5195, pp. 348 — 363, 2008

E Higher-Order (Non-)Modularity
Claus Appel, Vincent van Oostrom, Jakob Grue Simonsen
Proc. 21th RTA, LIPlcs 284, pp. 17 — 32, 2010

@ CoCo 2015 participant: CSl-ho 0.1
Julian Nagele
Proceedings of IWC 2015, p. 41

http://dx.doi.org/10.1016/S0304-3975(97)00143-6
http://dx.doi.org/10.1016/S0304-3975(96)00173-9
http://dx.doi.org/10.1007/978-3-540-71070-7_31
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.17
http://www.csl.sri.com/users/tiwari/iwc2015/

overview

@ simply typed lambda calculus

simple types: definition

we assume a base type o

e a base type is a simple type

e if A and B are simple types then A — B is a simple type

— is assumed to be right-associative
outermost parentheses are omitted

every simple type is of the form A; — ... - A, — o

simply typed lambda-terms: defintion

we assume a priori typed variables x,y, z, ...

e x: Ais asimply typed A-term of type A

e \x.M: B — Cis a simply typed A-term of type B — C
if M:Cand x: B

o MN: Ais asimply typed A-term of type A
ifM:B—Aand N:B

examples

AX.x: A= Aifx: A

X Ayx:A—-B—Aifx:Aandy: B

As.hzsz: (A—-A)—-A—-Aifs:tA—>Aandz: A
Q = (Ax. xx) (Ax. x x) is not typable

Y = Af. (Ax. f (xx)) (Ax. f (x x)) is not typable

T=(Ax.Ay.y(xxy))(Ax. Ay.y (xxy)) is not typable

termination of beta-reduction

unlike untyped A-calculus,
simply typed A-calculus is terminating
termination follows using the computability proof method

proof method is crucial for HO-termination proofs

method due to Tait and Girard

http://iml.univ-mrs.fr/~girard/

computability: definition

Definition

e M : o0 is computable
if M is terminating

e M: A — B is computable
if M N : B is computable for every computable N : A

Example
e x : 0 is computable
e (Ax.x)y : o is computable

e x: A — B computable?

first attempt of the termination proof

e step 1 A: computability implies termination
(for type o this holds by definition)
try induction on the definition of computability
for M : A — B we need to take a computable term of type A
do we have such a term?

e step 1B: show that variables are computable
try induction on the definition of computability
for x : A — B we need to show that x P is computable

e prove 1A and 1B simultaneously

e step 2: all simply typed terms are computable

Lemma (gives steps 1A and 1B)

if M : C computable then M : C terminating

for all n > 0:
if xPy1...P,: C terminating then x Py ... P, : C computable

simultaneous induction on the definition of types.

e for type o: both follow by definition of computabiity

o for type A — B:
1: take M : A — B computable
take x : A; it is computable by IH2
by definition, M x : B is computable, and hence by IH1 terminating
hence M : A — B is terminating

2: take xP; ... P, : A — B terminating

take Q : A computable (exists by IH2); it is terminating by IH1
hence x P; P, Q : B is terminating; it is computable by IH2

so xP;...P,: A— B computable

all terms are computable: proof attempt

induction on the definition of terms

M= x

M=PQ

M= XIx.P here it does not work immediately
we need to show: (Ax.P) Q is computable for computable Q
we will use:
P[x := Q] computable implies (Ax. P) Q computable
and strengthening of the current statement

all terms are computable (gives step 2)

Theorem

o computable = M? computable
Proof.

Induction on the definition of terms.

M= x
variables are computable and ¢ is computable

all terms are computable (gives step 2)

Theorem

o computable = M? computable

Proof.
Induction on the definition of terms.
M= x
M= Xx.P
o[x := N] is a computable substitution for N computable
by IH Polx=Nl = po[x .= N] is computable
by (exercise) lemma below, (Ax. P?) N is computable

Lemma
for all n > 0: if M[x := N] Py ... P, computable and N computable

then (Ax. M) N Py ... P, computable

all terms are computable (gives step 2)

Theorem

o computable = M? computable

Proof.

Induction on the definition of terms.

B0 M=x
B M=XMP
BM=PQ

by IH P? and Q7 are computable
by definition of computability, P Q7 is computable

finally, the result

we have: computability implies termination
we have: M? computable for every M and for every computable o

we have: identity substitution is computable

Corollary

simply typed A-calculus with S-reduction is terminating

Curry-Howard-De Bruijn isomorphism

the formulas and proofs of first-order propositional logic
correspond to
the types and terms of simply typed A-calculus

AT

BoA'V>

AsB oAM= A= B A

Ax: Ay B.x : A—->B—=A

overview

@ strategies

strategy: informally

there may be different ways to reduce a term

a strategy tells us how to reduce a term

a term may be weakly normalizing (WN) but not terminating (SN)
a normalizing strategy yields a reduction to normal form if possible
a perpetual strategy yields an infinite reduction if possible

in general: a strategy gives us a reduction with a desired property

reduction graph of a A-term

terms are the vertices and the reduction steps are the edges

a reduction graph may be finite and cycle-free; example: | x

a reduction graph may be finite with cycles; example: Q

a reduction graph may be infinite; example: (Ax. x x x) (Ax. x x x)
a reduction graph is not necessarily simple; example: | (I1)

a reduction graph may be nice to draw; example: (Ax.|xx) (Ax.|x x)

the leftmost-innermost reduction strategy

is not normalizing:

(M. y)Q2 =5 (M. y) Q2 =5 (Ax.y)Q =5 ...

does not copy redexes (example):

(M. fFxx)(((Ax.x)a)) =g (Ax.fxx)a—pgfaa

may contract redexes that are not needed:

(M.y)(lz) =5 (Ax.y)z =y

innermost reduction

for first-order orthogonal TRSs, any innermost strategy is perpetual
for A-calculus this is not true:

the term (Ax. (Ay. z) (x x)) (Ax. x x) is WIN:

(Ax. (Ay. 2) (xx)) (Ax. xx) =g (Ax.2) (Ax.xx) =5 z

but not SN:

(A (Ay.2) (xx)) (Ax.xx) =g (A\y.2) Q2 =5 (Ay.2)Q =5 ...

so innermost reduction is not perpetual for \-calculus

we do not have: strongly innermost normalizing implies strongly normalizing

the leftmost-outermost strategy

is normalizing for left-normal TRSs

A-calculus is left-normal (but not a TRS)
lefmost-outermost strategy is normalizing

first proof by Curry 1958,

recent proofa by Hirokawa, Middeldorp, and Moser,
and by Toyama and Van Oostrom

example: (Ax.y)Q —g3y

the rightmost-outermost strategy

is not normalizing:
(A Ay x)D)Q = (Ax. Ay.x))Q — ...

A-calculus is not right-normal

further reading

@ Leftmost outermost revisited
Nao Hirokawa, Aart Middeldorp and Georg Moser
LIPlcs 36 (2015)

@ Normalisation by Random Descent
Vincent van Oostrom and Yoshihito Toyama
LIPlcs 52 (2016)

https://10.4230/LIPIcs.RTA.2015.209
https://10.4230/LIPIcs.FSCD.2016.32

conclusion

for A-calculus and for higher-order rewriting

we often need multi-step reduction instead of parallel reduction

for A-calculus and for higher-order rewriting

we often need a variation of the computability proof method

more importantly

MANY THANKS TO THE ORGANIZERS

ADELINE, CLAIRE, FREDERIC, OLIVIER !!

	lecture 2
	definability
	natural numbers
	pairs
	lists
	recursive functions

	confluence
	simply typed lambda calculus
	strategies

