ISR 2019

 $2019 \ 07 \ 06$

 λ -calculus

lecture 2

Femke van Raamsdonk

overview

- definability
- confluence
- simply typed lambda calculus
- strategies

overview

• definability

- natural numbers
- pairs
- lists
- recursive functions

• confluence

- simply typed lambda calculus
- strategies

expressive power

the λ -calculus is Turing-complete

Church's thesis: everything that is computable

is definable in the pure untyped lambda calculus

we illustrate the expressive power

by considering the encoding of several data-types

natural numbers as lambda terms

we try to find:

inifinitely many

different

closed

normal forms

permitting to calculate

Church numerals

numerals

$$c_{0} = \lambda s. \lambda z. z$$

$$c_{1} = \lambda s. \lambda z. s z$$

$$c_{2} = \lambda s. \lambda z. s (s z)$$

$$c_{3} = \lambda s. \lambda z. s (s (s z))$$

$$c_{4} = \lambda s. \lambda z. s (s (s (s z)))$$

$$\vdots$$

$$c_{n} = \lambda s. \lambda z. s^{n}(z)$$

successor

$$\mathsf{S} = \lambda x. \, \lambda sz. \, s \, (x \, s \, z)$$

indeed

$$\mathsf{S} c_0 = (\lambda x. \lambda s. \lambda z. s(x s z)) c_0 =_{\beta} \lambda sz. (\lambda s'. \lambda z'. z') s(s z) =_{\beta} \lambda sz. s z$$

define other operations

$$c_{0} = \lambda s. \lambda z. z$$

$$c_{1} = \lambda s. \lambda z. s z$$

$$c_{2} = \lambda s. \lambda z. s (s z)$$

$$c_{3} = \lambda s. \lambda z. s (s (s z))$$

$$c_{4} = \lambda s. \lambda z. s (s (s (s z)))$$

$$\vdots$$

$$c_{n} = \lambda s. \lambda z. s^{n}(z)$$

$$S = \lambda x. \lambda s. \lambda z. s (x s z)$$

iszero = $\lambda n. n (\lambda y. false)$ true S' = $\lambda x. \lambda sz. x s (s z)$

arithmetic

addition:

plus := $\lambda mn. \lambda sz. ms(nsz)$

multiplication:

```
\mathsf{mul} := \lambda \mathsf{mn}.\,\lambda \mathsf{sz}.\,\mathsf{m}\,(\mathsf{n}\,\mathsf{s})\,\mathsf{z}
```

exponentiation:

 $\exp := \lambda m n. n m$

definability

assume a natural number *n* is encoded in the λ -calculus by [*n*]

a function $f : \mathbb{N} \to \mathbb{N}$ is definable in the λ -calculus by a term F if $F[n] =_{\beta} [f(n)]$ for every $n \in \mathbb{N}$

if we restrict attention to Church Numerals:

$$F c_n =_{\beta} c_{f(n)}$$

we have seen some definable functions, we even have:

$f: \mathbb{N} \to \mathbb{N}$ is computable iff f is λ -definable

we try to find:

- a method to combine two terms in a pair
- in such a way that a component can be extracted from the pair

pairs: definition definition of pairing operator:

 $\pi:=\lambda \mathit{lrz.\,z\,l\,r}$

then:

$$\pi P Q =_{\beta} \lambda z. z P Q$$

projections::

$$\pi_1 := \lambda u. u (\lambda lr. l) = \lambda u. u \text{ true}$$
$$\pi_2 := \lambda u. u (\lambda lr. r) = \lambda u. u \text{ false}$$

then:

$$\pi_1 (\pi P Q) =_{\beta} P$$
$$\pi_2 (\pi P Q) =_{\beta} Q$$

predecessor

auxiliary definition:

prefn := $\lambda f p. \pi$ false (ite $(\pi_1 p) (\pi_2 p) (f (\pi_2 p)))$

then:

prefn $f(\pi \operatorname{true} x) =_{\beta} \pi \operatorname{false} x$ prefn $f(\pi \operatorname{false} x) =_{\beta} \pi \operatorname{false}(f x)$

definition predecessor:

pred :=
$$\lambda x$$
. λsz . $\pi_2 (x (prefn s) (\pi true z))$

a list is obtained by repeatedly forming a pair

for example: [1, 2, 3] is (1, (2, (3, nil)))

lists: definition

constructors:

nil := $\lambda xy. y$

$$cons := \lambda ht. \lambda z. z h t = \pi$$

definition:

head :=
$$\lambda l. l (\lambda ht. h) = \pi_1$$

tail := $\lambda l. l (\lambda ht. t) = \pi_2$

then:

head (cons H T) = $_{\beta} H$ tail (cons H T) = $_{\beta} T$

empty

how do we define a predicate empty on lists?

 $\cos H T =_{\beta} \lambda z. z H T$

nil := $\lambda xy. y$

isempty := $\lambda I. I(\lambda x. \lambda y. \lambda z. \text{ false})$ true

alternative:

 $nil = \lambda z. true$

isempty = $\lambda I. I(\lambda x. \lambda y. \lambda z. \text{ false})$

recursive functions: examples in Haskell

```
factorial n = if (n==0)
  then 1
  else (n * factorial (n-1))
som [] = 0
som (h:t) = h + (som t)
length [] = 0
length (h:t) = (length t) + 1
```

how do we define length in lambda-calculus?

first idea:

length = λI . if I is empty then zero, else length of tail of I plus 1

lists represented as nil := λxy . y and cons := λht . λz . z h t

conditional represented as ite = $\lambda b. \lambda x. \lambda y. b x y$

check on empty represented as isompty := $\lambda I. I(\lambda xyz. \text{ false})$ true Church numerals with 0 represented as $c_0 = \lambda s. \lambda z. z$

tail represented as tail = $\lambda I. I(\lambda h. \lambda t. t)$

plus one represented as $S = \lambda x. \lambda sz. s(x s z)$

use fixed point combinator

So far we have:

length := λI . ite (isempty I) c_0 (S (length (tail I))) which still contains length. Now using

 $M := \lambda a. \lambda l.$ ite (isempty l) c_0 (S (a (tail l)))

we have

length $=_{\beta} M$ length

So we actually look for a fixed point of M! So we take:

length := Y M

with M defined as above, and Y Curry's fixed point combinator

recursive functions: method

we try to define:

G with $G = \ldots G \ldots$

hence we look for:

G with $G = (\lambda g. \ldots g. \ldots) G$

hence we take:

a fixed point of $\lambda g. \ldots g \ldots$

that is, using a fixed point combinator Y we define:

$$G = Y (\lambda g. \ldots g \ldots)$$

from Haskell to lambda

Haskell is translated to core Haskell which can be seen as $\lambda +$

```
length [] = 0
length (h:t) = (length t) + 1
```

becomes

becomes (...) becomes roughly

 $Y(\lambda a. \lambda l. if (l == []) then 0 else (\lambda(h: t). (1 + (a t))) l)$

remark: lambda calculi with patterns

computation by reduction and pattern matching:

first projection: $(\lambda \langle x, y \rangle. x) \langle 3, 5 \rangle \rightarrow x[x, y := 3, 5] = 3$

length of a non-empty list: $(\lambda(h:t).1 + (\text{length } t))(1:\text{nil}) \rightarrow (1 + (\text{length } t))[t:=\text{nil}] = 1 + \text{length nil}$

further reading

linear numeral systems

lan Mackie JAR 2018

overview

- definability
- confluence
- simply typed lambda calculus
- strategies

confluence: definition

every two coinitial rewrite sequences can be joined

confluence yields uniqueness of normal forms and consistency

how to prove confluence?

using Newman's Lemma:

SN and weak confluence \Rightarrow confluence

but λ -calculus is not SN; see Ω

using a method due to Tait and Martin-Löf:

show the diamond property for a relation \longmapsto with $\rightarrow_{\beta} \subseteq \longmapsto \subseteq \rightarrow_{\beta}^{*}$

what can we use for \mapsto ?

parallel beta-reduction

definition:

 $x \Rightarrow_{\beta} x$

if $M \Rightarrow_{\beta} M'$ then $\lambda x. M \Rightarrow_{\beta} \lambda x. M'$

if $M \Rightarrow_{\beta} M'$ and $N \Rightarrow_{\beta} N'$ then $M N \Rightarrow_{\beta} M' N'$

 $(\lambda x. M) N \Rightarrow_{\beta} M[x := N]$

example: $(II)(II) \Rightarrow_{\beta} II$

parallel reduction is a congruence

it is not the compatible closure of a reduction rule

parallel β -reduction does not have the diamond property

we have the divergence

```
(\lambda \mathbf{x}. (\lambda \mathbf{y}. \mathbf{x}) \mathsf{I}) (\mathsf{I} \mathsf{I}) \Rightarrow_{\beta} (\lambda \mathbf{y}. \mathsf{I} \mathsf{I}) \mathsf{I}
```

and

$$(\lambda x. (\lambda y. x) \mathsf{I}) (\mathsf{I} \mathsf{I}) \Rightarrow_{\beta} (\lambda x. x) \mathsf{I}$$

the intended common reduct I cannot be reached with \Rightarrow from $(\lambda y.II)I$ the residual of II is nested in the residual of $(\lambda y.x)I$ simlarly, parallel reduction for HRSs does not have the diamond property

multi-step beta-reduction

instead of parallel reduction we use multi-step reduction which corresponds to a complete development

 $x \rightsquigarrow x$

if $M \to M'$ then $\lambda x. M \to \lambda x. M'$

if $M \twoheadrightarrow M'$ and $N \twoheadrightarrow N'$ then $M N \twoheadrightarrow M' N'$

if $M \twoheadrightarrow M'$ and $N \twoheadrightarrow N'$ then $(\lambda x. M) N \twoheadrightarrow M'[x := N']$

examples

$$\frac{|| \leftrightarrow |}{(\lambda y. ||)| \leftrightarrow |}$$

$$\frac{x(|a) \twoheadrightarrow xa}{(\lambda x. x(|a))(|1) \twoheadrightarrow |a|}$$

$$\frac{|| \Rightarrow | |a \Rightarrow a}{(||)(|a) \Rightarrow |a}$$

limitations of multi-step reduction

we have
$$(\lambda x. \lambda y. x y) a b \rightarrow_{\beta} (\lambda y. a y) b \rightarrow_{\beta} a b$$

but not $(\lambda x. \lambda y. x y) a b \Rightarrow a b$

we have
$$I(\lambda x. x) a \rightarrow_{\beta} (\lambda x. x) a \rightarrow_{\beta} a$$

but not $I(\lambda x. x) a \rightarrow a$

we have
$$(\lambda x. x a) (\lambda y. x) \rightarrow_{\beta} (\lambda y. y) a \rightarrow_{\beta} a$$

but not $(\lambda x. x a) (\lambda y. y) \Rightarrow a$

multi-step reduction corresponds to complete developments where only residuals of initially present redexes are contracted

(Jean-Jacques Lévy, 1974)

uniform common reduct (Takahashi)

corresponds to complete development of the set of all redexes

 $x^* = x$ $\lambda x. P^* = \lambda x. P^*$ $P Q^* = P^* Q^* \text{ if } P Q \text{ not a redex}$ $(\lambda x. P) Q^* = P^*[x := Q^*]$

for example:

 $(\lambda \mathbf{x}. \mathbf{x} (\mathbf{I}a)) (\mathbf{I} b)^* = b a$ $(\lambda \mathbf{x}. (\lambda \mathbf{y}. \mathbf{x}) \mathbf{I}) (\mathbf{I} \mathbf{I})^* = \mathbf{I}$

confluence and hence consistency

 \rightarrow has the triangle property: if $M \rightarrow N$ then $N \rightarrow M^*$

hence it has the diamond property

hence \rightarrow_{β} is confluent

hence we have consistency:

 $\lambda xy. x \neq_{\beta} \lambda xy. y$

adding eta yields critical pairs

$$M N \not\leftarrow (\lambda x. M x) N \rightarrow_{\beta} M N$$

$$\lambda x. M \not \leftarrow \lambda x. (\lambda u. M) x \rightarrow_{\eta} \lambda u. M$$

the critical pairs are trivial, so beta-eta is weakly orthogoanal we can adapt the proof !

Z-property:

if there is a map * such that if a o b then $b o^* a^*$ and $a^* o b^*$

if ightarrow has the Z-property then ightarrow is confluent

we can use the uniform common reduct by Takahashi

(van Oostrom, Dehornoy)

further reading

Parallel Reductions in λ -calculus

Masako Takahashi IC 118(1), pp. 120-127, 1995

More Church-Rosser proofs

Tobias Nipkow JAR 26(1), pp. 51-66, 2001

A short machanized proof of the Church-Rosser Theorem by the Z-property for the λβ-calculus in Nomina Isabelle
 Julian Nagele, Vincent van Oostrom, Christian Sternagel
 5th IWC, pp. 55–59, 2016

further reading

Higher-order rewrite systems and their confluence Richard Mayr and Tobias Nipkow TCS 192, –. 3–29, 1998

Developing developments

Vincent van Oostrom TCS 175, pp. 159–181, 1997

Modularity of Confluence – Constructed

Vincent van Oostrom Proc. 4th IJCAR, LNAI 5195, pp. 348 – 363, 2008

Higher-Order (Non-)Modularity

Claus Appel, Vincent van Oostrom, Jakob Grue Simonsen Proc. 21th RTA, LIPIcs 284, pp. 17 – 32, 2010

CoCo 2015 participant: CSI-ho 0.1

Julian Nagele Proceedings of IWC 2015, p. 41

overview

- definability
- confluence
- simply typed lambda calculus
- strategies

simple types: definition

we assume a base type o

- a base type is a simple type
- if A and B are simple types then $A \rightarrow B$ is a simple type

 \rightarrow is assumed to be right-associative

outermost parentheses are omitted

every simple type is of the form $A_1 \rightarrow \ldots \rightarrow A_n \rightarrow o$

simply typed lambda-terms: defintion

we assume a priori typed variables x, y, z, \ldots

- x : A is a simply typed λ -term of type A
- λx. M : B → C is a simply typed λ-term of type B → C
 if M : C and x : B
- M N : A is a simply typed λ-term of type A if M : B → A and N : B

examples

$$\begin{split} \lambda x. & x : A \to A \text{ if } x : A \\ \lambda x. & \lambda y. x : A \to B \to A \text{ if } x : A \text{ and } y : B \\ \lambda s. & \lambda z. s z : (A \to A) \to A \to A \text{ if } s : A \to A \text{ and } z : A \\ \Omega &= (\lambda x. x x) (\lambda x. x x) \text{ is not typable} \\ Y &= \lambda f. (\lambda x. f (x x)) (\lambda x. f (x x)) \text{ is not typable} \\ T &= (\lambda x. \lambda y. y (x x y)) (\lambda x. \lambda y. y (x x y)) \text{ is not typable} \end{split}$$

termination of beta-reduction

unlike untyped λ -calculus,

simply typed $\lambda\text{-calculus}$ is terminating

termination follows using the computability proof method

proof method is crucial for HO-termination proofs

method due to Tait and Girard

computability: definition

Definition

- *M* : o is computable if *M* is terminating
- M : A → B is computable
 if M N : B is computable for every computable N : A

Example

- x : o is computable
- $(\lambda x. x) y$: o is computable
- $x : A \rightarrow B$ computable?

first attempt of the termination proof

- step 1 A: computability implies termination
 (for type o this holds by definition)
 try induction on the definition of computability
 for M : A → B we need to take a computable term of type A
 do we have such a term?
- step 1B: show that variables are computable try induction on the definition of computability for x : A → B we need to show that x P is computable
- prove 1A and 1B simultaneously
- step 2: all simply typed terms are computable

Lemma (gives steps 1A and 1B)

- **1** if M : C computable then M : C terminating
- 2 for all $n \ge 0$: if $x P_1 \dots P_n : C$ terminating then $x P_1 \dots P_n : C$ computable

simultaneous induction on the definition of types.

- for type o: both follow by definition of computability
- for type $A \rightarrow B$:

1: take $M : A \rightarrow B$ computable take x : A; it is computable by IH2 by definition, M x : B is computable, and hence by IH1 terminating hence $M : A \rightarrow B$ is terminating

2: take $x P_1 \dots P_n : A \to B$ terminating take Q : A computable (exists by IH2); it is terminating by IH1 hence $x P_1 P_n Q : B$ is terminating; it is computable by IH2 so $x P_1 \dots P_n : A \to B$ computable all terms are computable: proof attempt

induction on the definition of terms

- $1 M = \mathbf{x}$
- 2 M = P Q
- 3 $M = \lambda x. P$ here it does not work immediately we need to show: $(\lambda x. P) Q$ is computable for computable Qwe will use:

P[x := Q] computable implies $(\lambda x. P) Q$ computable and strengthening of the current statement all terms are computable (gives step 2)

Theorem

 $\sigma \text{ computable} \Rightarrow M^{\sigma} \text{ computable}$

Proof.

Induction on the definition of terms.

$1 \quad M = \mathbf{x}$

variables are computable and $\boldsymbol{\sigma}$ is computable

all terms are computable (gives step 2)

Theorem

 $\sigma \text{ computable} \Rightarrow M^{\sigma} \text{ computable}$

Proof.

Induction on the definition of terms.

$$1 \quad M = x$$

2 $M = \lambda x. P$ $\sigma[x := N]$ is a computable substitution for N computable by IH $P^{\sigma[x:=N]} = P^{\sigma}[x := N]$ is computable by (exercise) lemma below, $(\lambda x. P^{\sigma}) N$ is computable

Lemma

for all $n \ge 0$: if $M[x := N] P_1 \dots P_n$ computable and N computable then $(\lambda x. M) N P_1 \dots P_n$ computable all terms are computable (gives step 2)

Theorem

 $\sigma \text{ computable} \Rightarrow M^{\sigma} \text{ computable}$

Proof.

Induction on the definition of terms.

- 1 M = x
- $2 M = \lambda x. P$
- 3 M = P Qby IH P^{σ} and Q^{σ} are computable by definition of computability, $P^{\sigma} Q^{\sigma}$ is computable

- we have: computability implies termination
- we have: M^{σ} computable for every M and for every computable σ we have: identity substitution is computable
- Corollary
- simply typed $\lambda\text{-calculus}$ with $\beta\text{-reduction}$ is terminating

Curry-Howard-De Bruijn isomorphism

the formulas and proofs of first-order propositional logic

correspond to

the types and terms of simply typed $\lambda\text{-calculus}$

$$\frac{\begin{bmatrix} A^{x} \\ B \to A \end{bmatrix}}{A \to B \to A} I[y] \to \\ I[x] \to \qquad : \quad A \to B \to A$$

 $\lambda x : A. \lambda y : B. x$: $A \to B \to A$

overview

- definability
- confluence
- simply typed lambda calculus
- strategies

strategy: informally

there may be different ways to reduce a term

- a strategy tells us how to reduce a term
- a term may be weakly normalizing (WN) but not terminating (SN)
- a normalizing strategy yields a reduction to normal form if possible
- a perpetual strategy yields an infinite reduction if possible
- in general: a strategy gives us a reduction with a desired property

reduction graph of a λ -term

terms are the vertices and the reduction steps are the edges a reduction graph may be finite and cycle-free; example: |x|a reduction graph may be finite with cycles; example: Ω a reduction graph may be infinite; example: $(\lambda x. x \times x) (\lambda x. x \times x)$ a reduction graph is not necessarily simple; example: 1(11)a reduction graph may be nice to draw; example: $(\lambda x. 1 \times x) (\lambda x. 1 \times x)$

the leftmost-innermost reduction strategy

is not normalizing:

$$(\lambda x. y) \Omega \rightarrow_{\beta} (\lambda x. y) \Omega \rightarrow_{\beta} (\lambda x. y) \Omega \rightarrow_{\beta} \dots$$

does not copy redexes (example):

$$(\lambda x. f x x) (((\lambda x. x) a)) \rightarrow_{\beta} (\lambda x. f x x) a \rightarrow_{\beta} f a a$$

may contract redexes that are not needed:

$$(\lambda x. y) (|z) \rightarrow_{\beta} (\lambda x. y) z \rightarrow_{\beta} y$$

innermost reduction

for first-order orthogonal TRSs, any innermost strategy is perpetual

for λ -calculus this is not true:

the term $(\lambda x. (\lambda y. z) (x x)) (\lambda x. x x)$ is WIN:

$$(\lambda x. (\lambda y. z) (x x)) (\lambda x. x x) \rightarrow_{\beta} (\lambda x. z) (\lambda x. x x) \rightarrow_{\beta} z$$

but not SN:

$$(\lambda x. (\lambda y. z) (x x)) (\lambda x. x x) \rightarrow_{\beta} (\lambda y. z) \Omega \rightarrow_{\beta} (\lambda y. z) \Omega \rightarrow_{\beta} \ldots$$

so innermost reduction is not perpetual for λ -calculus

we do not have: strongly innermost normalizing implies strongly normalizing

the leftmost-outermost strategy

- is normalizing for left-normal TRSs
- λ -calculus is left-normal (but not a TRS)
- lefmost-outermost strategy is normalizing
- first proof by Curry 1958,
- recent proofa by Hirokawa, Middeldorp, and Moser,
- and by Toyama and Van Oostrom

example: $(\lambda x. y) \Omega \rightarrow_{\beta} y$

the rightmost-outermost strategy

is not normalizing:

$$((\lambda x. \lambda y. x) |) \Omega \rightarrow ((\lambda x. \lambda y. x) |) \Omega \rightarrow \dots$$

 $\lambda\text{-calculus}$ is not right-normal

further reading

Leftmost outermost revisited

Nao Hirokawa, Aart Middeldorp and Georg Moser LIPIcs 36 (2015)

Normalisation by Random Descent

Vincent van Oostrom and Yoshihito Toyama LIPIcs 52 (2016)

for λ -calculus and for higher-order rewriting

we often need multi-step reduction instead of parallel reduction

for $\lambda\text{-calculus}$ and for higher-order rewriting

we often need a variation of the computability proof method

more importantly

MANY THANKS TO THE ORGANIZERS

Adeline, Claire, Frédéric, Olivier !!